
Static Routing in Stochastic Scheduling:
Performance Guarantees and Asymptotic Optimality

Chen Chen

Duke University
The Fuqua School of Business

10/22/2017

*joint work with:

Santiago Balseiro (Columbia) and David Brown (Duke)

Problem formulation

Complete a set J = {1, . . . , J} of jobs using a set M = {1, . . . ,M} of machines.

Each machine can process at most one job at a time; no preemption.

� pjm ..= random variable for time it takes machine m to process job j
– pjm are independent across j (independence across m not required)
– If j is assigned to m, pjm not fully known until j completed

� Each job j has an associated positive weight wj

� Objective is to minimize the expected weighted total completion time:

V ∗ = min
π∈Π

E
⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈J

wjC
π
j

⎤
⎥
⎥
⎥
⎥
⎦

Π ..= set of non-anticipative policies

Cπj
..= completion time of j using π (waiting time plus processing time)

1 / 22

Problem formulation

Complete a set J = {1, . . . , J} of jobs using a set M = {1, . . . ,M} of machines.

Each machine can process at most one job at a time; no preemption.

� pjm ..= random variable for time it takes machine m to process job j
– pjm are independent across j (independence across m not required)
– If j is assigned to m, pjm not fully known until j completed

� Each job j has an associated positive weight wj

� Objective is to minimize the expected weighted total completion time:

V ∗ = min
π∈Π

E
⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈J

wjC
π
j

⎤
⎥
⎥
⎥
⎥
⎦

Π ..= set of non-anticipative policies

Cπj
..= completion time of j using π (waiting time plus processing time)

1 / 22

time
machine 2

machine 1

job 3 job 4

job 1 job 2

C1

C2

C3

C4

2 / 22

time
machine 2

machine 1

job 3 job 4

job 1 job 2

C1

C2

C3

C4

2 / 22

time
machine 2

machine 1

job 3 job 4

job 1 job 2

C1

C2

C3

C4

2 / 22

time
machine 2

machine 1

job 3 job 4

job 1 job 2

C1

C2

C3

C4

2 / 22

time
machine 2

machine 1

job 3 job 4

job 1 job 2

C1

C2

C3

C4

2 / 22

Motivation

� The problem can be written as a stochastic DP but it is very difficult to

solve: curse of dimensionality, sometimes idling machines can be optimal

� Goal: find simple heuristic policies whose performance is close to optimality

� Provide useful analytical bounds on the suboptimality of the heuristic policy

� Main result is a uniform bound on the performance loss of a simple static

routing policy; proved via the information relaxation duality approach

3 / 22

Motivation

� The problem can be written as a stochastic DP but it is very difficult to

solve: curse of dimensionality, sometimes idling machines can be optimal

� Goal: find simple heuristic policies whose performance is close to optimality

� Provide useful analytical bounds on the suboptimality of the heuristic policy

� Main result is a uniform bound on the performance loss of a simple static

routing policy; proved via the information relaxation duality approach

3 / 22

Motivation

� The problem can be written as a stochastic DP but it is very difficult to

solve: curse of dimensionality, sometimes idling machines can be optimal

� Goal: find simple heuristic policies whose performance is close to optimality

� Provide useful analytical bounds on the suboptimality of the heuristic policy

� Main result is a uniform bound on the performance loss of a simple static

routing policy; proved via the information relaxation duality approach

3 / 22

Motivation

� The problem can be written as a stochastic DP but it is very difficult to

solve: curse of dimensionality, sometimes idling machines can be optimal

� Goal: find simple heuristic policies whose performance is close to optimality

� Provide useful analytical bounds on the suboptimality of the heuristic policy

� Main result is a uniform bound on the performance loss of a simple static

routing policy; proved via the information relaxation duality approach

3 / 22

Literature review

� Möhring et al. (1999): job processing times are stochastic but identical

across machines; analysis based on a polyhedral relaxation of the

performance space.

� Skutella (2001) and Sethuraman and Squillante (1999): study a

deterministic version of our problem; propose a constant factor

approximation algorithm.

� Skutella et al. (2016): also study stochastic scheduling on unrelated

machines;

– The policy based on a novel time-indexed linear programming (LP)

relaxation
– Require a discretization of the time dimension that involves a large number

of variables
– Require a full information of all cumulative distributions of job processing

times.

4 / 22

Static routing policies
We consider static policies: commit jobs to machines from the beginning

� Step 1: Route jobs to machines.
– Each job j is routed (independently) to machine m with probability xjm
– x = (xjm)jm ∈ RJ×M+ , with ∑m∈M xjm = 1, ∀j ∈ J is the routing matrix

� Step 2: Sequence jobs on each machine.
For a given routing, the optimal sequencing for each machine is easy:

– i ≺m j if and only if wi/E[pim] ≥ wj/E[pjm]
– “WSEPT rule”: shown in Rothkopf (1966) to be optimal for one machine

� Performance of static routing policy given x:

V R
(x) = ∑

j∈J

wj ∑
m∈M

xjm(E[pjm]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j’s processing time

+

j’s waiting time

³¹¹¹·¹¹¹µ

∑
i≺mj

ximE[pim])

´¹¹¹¸¹¹¶
E[Cj]

.

Will show: for a good choice of x, the static routing policy approaches

optimality as the number of jobs J →∞ (under some conditions...)

5 / 22

Static routing policies
We consider static policies: commit jobs to machines from the beginning

� Step 1: Route jobs to machines.
– Each job j is routed (independently) to machine m with probability xjm
– x = (xjm)jm ∈ RJ×M+ , with ∑m∈M xjm = 1, ∀j ∈ J is the routing matrix

� Step 2: Sequence jobs on each machine.
For a given routing, the optimal sequencing for each machine is easy:

– i ≺m j if and only if wi/E[pim] ≥ wj/E[pjm]
– “WSEPT rule”: shown in Rothkopf (1966) to be optimal for one machine

� Performance of static routing policy given x:

V R
(x) = ∑

j∈J

wj ∑
m∈M

xjm(E[pjm]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j’s processing time

+

j’s waiting time

³¹¹¹·¹¹¹µ

∑
i≺mj

ximE[pim])

´¹¹¹¸¹¹¶
E[Cj]

.

Will show: for a good choice of x, the static routing policy approaches

optimality as the number of jobs J →∞ (under some conditions...)

5 / 22

Static routing policies
We consider static policies: commit jobs to machines from the beginning

� Step 1: Route jobs to machines.
– Each job j is routed (independently) to machine m with probability xjm
– x = (xjm)jm ∈ RJ×M+ , with ∑m∈M xjm = 1, ∀j ∈ J is the routing matrix

� Step 2: Sequence jobs on each machine.
For a given routing, the optimal sequencing for each machine is easy:

– i ≺m j if and only if wi/E[pim] ≥ wj/E[pjm]
– “WSEPT rule”: shown in Rothkopf (1966) to be optimal for one machine

� Performance of static routing policy given x:

V R
(x) = ∑

j∈J

wj ∑
m∈M

xjm(E[pjm]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j’s processing time

+

j’s waiting time

³¹¹¹·¹¹¹µ

∑
i≺mj

ximE[pim])

´¹¹¹¸¹¹¶
E[Cj]

.

Will show: for a good choice of x, the static routing policy approaches

optimality as the number of jobs J →∞ (under some conditions...)

5 / 22

Static routing policies
We consider static policies: commit jobs to machines from the beginning

� Step 1: Route jobs to machines.
– Each job j is routed (independently) to machine m with probability xjm
– x = (xjm)jm ∈ RJ×M+ , with ∑m∈M xjm = 1, ∀j ∈ J is the routing matrix

� Step 2: Sequence jobs on each machine.
For a given routing, the optimal sequencing for each machine is easy:

– i ≺m j if and only if wi/E[pim] ≥ wj/E[pjm]
– “WSEPT rule”: shown in Rothkopf (1966) to be optimal for one machine

� Performance of static routing policy given x:

V R
(x) = ∑

j∈J

wj ∑
m∈M

xjm(E[pjm]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j’s processing time

+

j’s waiting time

³¹¹¹·¹¹¹µ

∑
i≺mj

ximE[pim])

´¹¹¹¸¹¹¶
E[Cj]

.

Will show: for a good choice of x, the static routing policy approaches

optimality as the number of jobs J →∞ (under some conditions...)

5 / 22

Static routing policies
We consider static policies: commit jobs to machines from the beginning

� Step 1: Route jobs to machines.
– Each job j is routed (independently) to machine m with probability xjm
– x = (xjm)jm ∈ RJ×M+ , with ∑m∈M xjm = 1, ∀j ∈ J is the routing matrix

� Step 2: Sequence jobs on each machine.
For a given routing, the optimal sequencing for each machine is easy:

– i ≺m j if and only if wi/E[pim] ≥ wj/E[pjm]
– “WSEPT rule”: shown in Rothkopf (1966) to be optimal for one machine

� Performance of static routing policy given x:

V R
(x) = ∑

j∈J

wj ∑
m∈M

xjm(E[pjm]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j’s processing time

+

j’s waiting time

³¹¹¹·¹¹¹µ

∑
i≺mj

ximE[pim])

´¹¹¹¸¹¹¶
E[Cj]

.

Will show: for a good choice of x, the static routing policy approaches

optimality as the number of jobs J →∞ (under some conditions...)

5 / 22

Static routing policies
We consider static policies: commit jobs to machines from the beginning

� Step 1: Route jobs to machines.
– Each job j is routed (independently) to machine m with probability xjm
– x = (xjm)jm ∈ RJ×M+ , with ∑m∈M xjm = 1, ∀j ∈ J is the routing matrix

� Step 2: Sequence jobs on each machine.
For a given routing, the optimal sequencing for each machine is easy:

– i ≺m j if and only if wi/E[pim] ≥ wj/E[pjm]
– “WSEPT rule”: shown in Rothkopf (1966) to be optimal for one machine

� Performance of static routing policy given x:

V R
(x) = ∑

j∈J

wj ∑
m∈M

xjm(E[pjm]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j’s processing time

+

j’s waiting time

³¹¹¹·¹¹¹µ

∑
i≺mj

ximE[pim])

´¹¹¹¸¹¹¶
E[Cj]

.

Will show: for a good choice of x, the static routing policy approaches

optimality as the number of jobs J →∞ (under some conditions...)

5 / 22

Static routing policies
We consider static policies: commit jobs to machines from the beginning

� Step 1: Route jobs to machines.
– Each job j is routed (independently) to machine m with probability xjm
– x = (xjm)jm ∈ RJ×M+ , with ∑m∈M xjm = 1, ∀j ∈ J is the routing matrix

� Step 2: Sequence jobs on each machine.
For a given routing, the optimal sequencing for each machine is easy:

– i ≺m j if and only if wi/E[pim] ≥ wj/E[pjm]
– “WSEPT rule”: shown in Rothkopf (1966) to be optimal for one machine

� Performance of static routing policy given x:

V R
(x) = ∑

j∈J

wj ∑
m∈M

xjm(E[pjm]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j’s processing time

+

j’s waiting time

³¹¹¹·¹¹¹µ

∑
i≺mj

ximE[pim])

´¹¹¹¸¹¹¶
E[Cj]

.

Will show: for a good choice of x, the static routing policy approaches

optimality as the number of jobs J →∞ (under some conditions...)
5 / 22

Convex relaxations
Given x, evaluating V R(x) is easy; optimizing V R(x) is hard (not convex...)

� Consider instead a relaxation of the objective function:

ZR
(x) ..= V R

(x) −
1

2
∑
j∈J

wj ∑
m∈M

E[pjm]xjm(1 − xjm)

´¹¹¸¹¹¹¶
xjm∈[0,1] Ô⇒ ZR(x) ≤ V R(x)

� Moreover, ZR(x) is convex and quadratic in x (Skutella (2001) and

Sethuraman and Squillante (1999) - study deterministic case)

� We route according to an optimal solution x∗ of the convex problem:

minimize
x∈RJ×M

+

{ZR
(x) ∶ ∑

m∈M

xm = 1} .

� Optimization only depends on processing times through E[pjm]

� Let ZR ..= ZR(x∗) and V R ..= V R(x∗)

6 / 22

Convex relaxations
Given x, evaluating V R(x) is easy; optimizing V R(x) is hard (not convex...)

� Consider instead a relaxation of the objective function:

ZR
(x) ..= V R

(x) −
1

2
∑
j∈J

wj ∑
m∈M

E[pjm]xjm(1 − xjm)

´¹¹¸¹¹¹¶
xjm∈[0,1] Ô⇒ ZR(x) ≤ V R(x)

� Moreover, ZR(x) is convex and quadratic in x (Skutella (2001) and

Sethuraman and Squillante (1999) - study deterministic case)

� We route according to an optimal solution x∗ of the convex problem:

minimize
x∈RJ×M

+

{ZR
(x) ∶ ∑

m∈M

xm = 1} .

� Optimization only depends on processing times through E[pjm]

� Let ZR ..= ZR(x∗) and V R ..= V R(x∗)

6 / 22

Convex relaxations
Given x, evaluating V R(x) is easy; optimizing V R(x) is hard (not convex...)

� Consider instead a relaxation of the objective function:

ZR
(x) ..= V R

(x) −
1

2
∑
j∈J

wj ∑
m∈M

E[pjm]xjm(1 − xjm)

´¹¹¸¹¹¹¶
xjm∈[0,1] Ô⇒ ZR(x) ≤ V R(x)

� Moreover, ZR(x) is convex and quadratic in x (Skutella (2001) and

Sethuraman and Squillante (1999) - study deterministic case)

� We route according to an optimal solution x∗ of the convex problem:

minimize
x∈RJ×M

+

{ZR
(x) ∶ ∑

m∈M

xm = 1} .

� Optimization only depends on processing times through E[pjm]

� Let ZR ..= ZR(x∗) and V R ..= V R(x∗)

6 / 22

Convex relaxations
Given x, evaluating V R(x) is easy; optimizing V R(x) is hard (not convex...)

� Consider instead a relaxation of the objective function:

ZR
(x) ..= V R

(x) −
1

2
∑
j∈J

wj ∑
m∈M

E[pjm]xjm(1 − xjm)

´¹¹¸¹¹¹¶
xjm∈[0,1] Ô⇒ ZR(x) ≤ V R(x)

� Moreover, ZR(x) is convex and quadratic in x (Skutella (2001) and

Sethuraman and Squillante (1999) - study deterministic case)

� We route according to an optimal solution x∗ of the convex problem:

minimize
x∈RJ×M

+

{ZR
(x) ∶ ∑

m∈M

xm = 1} .

� Optimization only depends on processing times through E[pjm]

� Let ZR ..= ZR(x∗) and V R ..= V R(x∗)

6 / 22

Convex relaxations
Given x, evaluating V R(x) is easy; optimizing V R(x) is hard (not convex...)

� Consider instead a relaxation of the objective function:

ZR
(x) ..= V R

(x) −
1

2
∑
j∈J

wj ∑
m∈M

E[pjm]xjm(1 − xjm)

´¹¹¸¹¹¹¶
xjm∈[0,1] Ô⇒ ZR(x) ≤ V R(x)

� Moreover, ZR(x) is convex and quadratic in x (Skutella (2001) and

Sethuraman and Squillante (1999) - study deterministic case)

� We route according to an optimal solution x∗ of the convex problem:

minimize
x∈RJ×M

+

{ZR
(x) ∶ ∑

m∈M

xm = 1} .

� Optimization only depends on processing times through E[pjm]

� Let ZR ..= ZR(x∗) and V R ..= V R(x∗)

6 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x)V ∗ ≤ V R:

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x)V ∗ ≤ V R:

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x)V ∗ ≤ V R:

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x) =V ∗ ≤ V R:

V R
≤ V ∗ +

1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x) =V ∗ ≤ V R:

V R
≤ V ∗

´¸¶
Ω(J2)

+
M − 1

2M
∑
j∈J

wj max
m∈M

pjm

´¹¹¹¸¹¹¹¶
O(J)

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x) =V ∗ ≤ V R:

V R
≤ V ∗

´¸¶
Ω(J2)

+
M − 1

2M
∑
j∈J

wj max
m∈M

pjm

´¹¹¹¸¹¹¹¶
O(J)

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x) =V ∗ ≤ V R:

V R
≤ V ∗

´¸¶
Ω(J2)

+
M − 1

2M
∑
j∈J

wj max
m∈M

pjm

´¹¹¹¸¹¹¹¶
O(J)

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x) =V ∗ ≤ V R:

V R
≤ V ∗

´¸¶
Ω(J2)

+
M − 1

2M
∑
j∈J

wj max
m∈M

pjm

´¹¹¹¸¹¹¹¶
O(J)

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x) =V ∗ ≤ V R:

V R
≤ V ∗

´¸¶
Ω(J2)

+
M − 1

2M
∑
j∈J

wj max
m∈M

pjm

´¹¹¹¸¹¹¹¶
O(J)

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Insights from the deterministic case
When the pjm are deterministic, static routing is optimal (no uncertainty!)

How well does x∗ perform in this case?

� Skutella (2001), Sethuraman and Squillante (1999): within 3/2 of V ∗

� On the other hand:

ZR
= V R

−
1

2
∑
j∈J

wj ∑
m∈M

pjmx
∗
jm(1 − x∗jm)

� Problem is deterministic ⇒ ZR = min
x∈X

ZR(x) ≤ min
x∈X

V R(x) ≥V ∗ ≤ V R:

V R
≤ V ∗

´¸¶
Ω(J2)

+
M − 1

2M
∑
j∈J

wj max
m∈M

pjm

´¹¹¹¸¹¹¹¶
O(J)

� Relative suboptimality of static routing:
J→∞
ÐÐÐ→ 0

Can we derive similar guarantees in the stochastic case?

7 / 22

Perfect information bound

Returning to the stochastic problem... imagine all processing times

p ..= {pjm}j∈J ,m∈M are revealed before scheduling jobs

� Leads to a lower bound on V ∗

1. Sample p

2. Solve a deterministic scheduling problem given p

3. Average over p

... usually gives a weak lower bound!

� Knowing all the processing times in advance is extremely valuable

(a) Can route jobs to fast machines in every sample path

(b) Can sequence jobs on a given machine differently in every sample path -

prioritize relatively fast jobs

To improve the lower bound: we need a penalty!

8 / 22

Perfect information bound

Returning to the stochastic problem... imagine all processing times

p ..= {pjm}j∈J ,m∈M are revealed before scheduling jobs

� Leads to a lower bound on V ∗

1. Sample p

2. Solve a deterministic scheduling problem given p

3. Average over p

... usually gives a weak lower bound!

� Knowing all the processing times in advance is extremely valuable

(a) Can route jobs to fast machines in every sample path

(b) Can sequence jobs on a given machine differently in every sample path -

prioritize relatively fast jobs

To improve the lower bound: we need a penalty!

8 / 22

Perfect information bound

Returning to the stochastic problem... imagine all processing times

p ..= {pjm}j∈J ,m∈M are revealed before scheduling jobs

� Leads to a lower bound on V ∗

1. Sample p

2. Solve a deterministic scheduling problem given p

3. Average over p

... usually gives a weak lower bound!

� Knowing all the processing times in advance is extremely valuable

(a) Can route jobs to fast machines in every sample path

(b) Can sequence jobs on a given machine differently in every sample path -

prioritize relatively fast jobs

To improve the lower bound: we need a penalty!

8 / 22

Perfect information bound

Returning to the stochastic problem... imagine all processing times

p ..= {pjm}j∈J ,m∈M are revealed before scheduling jobs

� Leads to a lower bound on V ∗

1. Sample p

2. Solve a deterministic scheduling problem given p

3. Average over p

... usually gives a weak lower bound!

� Knowing all the processing times in advance is extremely valuable

(a) Can route jobs to fast machines in every sample path

(b) Can sequence jobs on a given machine differently in every sample path -

prioritize relatively fast jobs

To improve the lower bound: we need a penalty!

8 / 22

Perfect information bound

Returning to the stochastic problem... imagine all processing times

p ..= {pjm}j∈J ,m∈M are revealed before scheduling jobs

� Leads to a lower bound on V ∗

1. Sample p

2. Solve a deterministic scheduling problem given p

3. Average over p

... usually gives a weak lower bound!

� Knowing all the processing times in advance is extremely valuable

(a) Can route jobs to fast machines in every sample path

(b) Can sequence jobs on a given machine differently in every sample path -

prioritize relatively fast jobs

To improve the lower bound: we need a penalty!

8 / 22

Perfect information bound

Returning to the stochastic problem... imagine all processing times

p ..= {pjm}j∈J ,m∈M are revealed before scheduling jobs

� Leads to a lower bound on V ∗

1. Sample p

2. Solve a deterministic scheduling problem given p

3. Average over p

... usually gives a weak lower bound!

� Knowing all the processing times in advance is extremely valuable

(a) Can route jobs to fast machines in every sample path

(b) Can sequence jobs on a given machine differently in every sample path -

prioritize relatively fast jobs

To improve the lower bound: we need a penalty!

8 / 22

Perfect information bound

Returning to the stochastic problem... imagine all processing times

p ..= {pjm}j∈J ,m∈M are revealed before scheduling jobs

� Leads to a lower bound on V ∗

1. Sample p

2. Solve a deterministic scheduling problem given p

3. Average over p

... usually gives a weak lower bound!

� Knowing all the processing times in advance is extremely valuable

(a) Can route jobs to fast machines in every sample path

(b) Can sequence jobs on a given machine differently in every sample path -

prioritize relatively fast jobs

To improve the lower bound: we need a penalty!

8 / 22

Improving perfect information bounds

� Include a penalty that compensates for the extra information

� “Dual feasibility”: Expected Penalty = 0 for all non-anticipative policies

With any dual feasible penalty:

E [Cost with any non-anticipative policy]

=

E [Cost plus penalty with any non-anticipative policy]

≥

E [Cost plus penalty with perfect information]

´¹¹¸¹¹¹¶
optimize cost plus penalty along each path

� In particular: lower bound on the performance of an optimal policy

With the right penalty: provides a tight bound!

9 / 22

Improving perfect information bounds

� Include a penalty that compensates for the extra information

� “Dual feasibility”: Expected Penalty = 0 for all non-anticipative policies

With any dual feasible penalty:

E [Cost with any non-anticipative policy]

=

E [Cost plus penalty with any non-anticipative policy]

≥

E [Cost plus penalty with perfect information]

´¹¹¸¹¹¹¶
optimize cost plus penalty along each path

� In particular: lower bound on the performance of an optimal policy

With the right penalty: provides a tight bound!

9 / 22

Improving perfect information bounds

� Include a penalty that compensates for the extra information

� “Dual feasibility”: Expected Penalty = 0 for all non-anticipative policies

With any dual feasible penalty:

E [Cost with any non-anticipative policy]

=

E [Cost plus penalty with any non-anticipative policy]

≥

E [Cost plus penalty with perfect information]

´¹¹¸¹¹¹¶
optimize cost plus penalty along each path

� In particular: lower bound on the performance of an optimal policy

With the right penalty: provides a tight bound!

9 / 22

Improving perfect information bounds

� Include a penalty that compensates for the extra information

� “Dual feasibility”: Expected Penalty = 0 for all non-anticipative policies

With any dual feasible penalty:

E [Cost with any non-anticipative policy]

=

E [Cost plus penalty with any non-anticipative policy]

≥

E [Cost plus penalty with perfect information]

´¹¹¸¹¹¹¶
optimize cost plus penalty along each path

� In particular: lower bound on the performance of an optimal policy

With the right penalty: provides a tight bound!

9 / 22

Improving perfect information bounds

� Include a penalty that compensates for the extra information

� “Dual feasibility”: Expected Penalty = 0 for all non-anticipative policies

With any dual feasible penalty:

E [Cost with any non-anticipative policy]

=

E [Cost plus penalty with any non-anticipative policy]

≥

E [Cost plus penalty with perfect information]
´¹¹¸¹¹¹¶

optimize cost plus penalty along each path

� In particular: lower bound on the performance of an optimal policy

With the right penalty: provides a tight bound!

9 / 22

Improving perfect information bounds

� Include a penalty that compensates for the extra information

� “Dual feasibility”: Expected Penalty = 0 for all non-anticipative policies

With any dual feasible penalty:

E [Cost with any non-anticipative policy]

=

E [Cost plus penalty with any non-anticipative policy]

≥

E [Cost plus penalty with perfect information]
´¹¹¸¹¹¹¶

optimize cost plus penalty along each path

� In particular: lower bound on the performance of an optimal policy

With the right penalty: provides a tight bound!

9 / 22

Improving perfect information bounds

� Include a penalty that compensates for the extra information

� “Dual feasibility”: Expected Penalty = 0 for all non-anticipative policies

With any dual feasible penalty:

E [Cost with any non-anticipative policy]

=

E [Cost plus penalty with any non-anticipative policy]

≥

E [Cost plus penalty with perfect information]
´¹¹¸¹¹¹¶

optimize cost plus penalty along each path

� In particular: lower bound on the performance of an optimal policy

With the right penalty: provides a tight bound!

9 / 22

Penalty

� Consider a decomposed penalty:

Y π = Y πS + Y πR

– Y π
S is a sequencing penalty: “push” to the WSEPT sequencing

– Y π
R is a routing penalty: “push” to routing with x∗

� Dual feasibility - for all non-anticipative policies π ∈ Π:

E[Y πS] = 0 and E[Y πR] = 0, thus E[Y π] = 0.

10 / 22

Penalty

� Consider a decomposed penalty:

Y π = Y πS + Y πR

– Y π
S is a sequencing penalty: “push” to the WSEPT sequencing

– Y π
R is a routing penalty: “push” to routing with x∗

� Dual feasibility - for all non-anticipative policies π ∈ Π:

E[Y πS] = 0 and E[Y πR] = 0, thus E[Y π] = 0.

10 / 22

Penalty

� Consider a decomposed penalty:

Y π = Y πS + Y πR

– Y π
S is a sequencing penalty: “push” to the WSEPT sequencing

– Y π
R is a routing penalty: “push” to routing with x∗

� Dual feasibility - for all non-anticipative policies π ∈ Π:

E[Y πS] = 0 and E[Y πR] = 0, thus E[Y π] = 0.

10 / 22

Penalty

� Consider a decomposed penalty:

Y π = Y πS + Y πR

– Y π
S is a sequencing penalty: “push” to the WSEPT sequencing

– Y π
R is a routing penalty: “push” to routing with x∗

� Dual feasibility - for all non-anticipative policies π ∈ Π:

E[Y πS] = 0 and E[Y πR] = 0, thus E[Y π] = 0.

10 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penalty

pjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low

advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j

delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High

delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Sequencing penalty

Set Y πS = ∑
j,m

wjS
π
jm (

pjm
E[pjm]

− 1), where Sπjm = start time of j on m.

Dual feasibility: E[Y πS] = 0 for all π ∈ Π

Combined objective

∑iwiCi Penaltypjm

Low
advance j delay j

High
delay j advance j

+

Optimal: always sequence in order of
wj

E[pjm]
Ô⇒ WSEPT!

11 / 22

Routing penalty

Set Y πR = ∑
j,m

λjm (1 −
pjm

E[pjm]
)xjm for some λjm ∈ R.

Dual feasible?

Good choice for λjm?

Inspiration: minimize
x∈RJ×M

+

{ZR(x) ∶ ∑
m∈M

xm = 1}

Lagrange multiplier ν∗ ∈ RJ

Marginal cost of assigning j to m at optimality =
∂ZR

(x∗)
∂xjm

= ν∗j

λjm = ν∗j

12 / 22

Routing penalty

Set Y πR = ∑
j,m

λjm (1 −
pjm

E[pjm]
)xjm for some λjm ∈ R. Dual feasible?

Good choice for λjm?

Inspiration: minimize
x∈RJ×M

+

{ZR(x) ∶ ∑
m∈M

xm = 1}

Lagrange multiplier ν∗ ∈ RJ

Marginal cost of assigning j to m at optimality =
∂ZR

(x∗)
∂xjm

= ν∗j

λjm = ν∗j

12 / 22

Routing penalty

Set Y πR = ∑
j,m

λjm (1 −
pjm

E[pjm]
)xjm for some λjm ∈ R. Dual feasible?

Good choice for λjm?

Inspiration: minimize
x∈RJ×M

+

{ZR(x) ∶ ∑
m∈M

xm = 1}

Lagrange multiplier ν∗ ∈ RJ

Marginal cost of assigning j to m at optimality =
∂ZR

(x∗)
∂xjm

= ν∗j

λjm = ν∗j

12 / 22

Routing penalty

Set Y πR = ∑
j,m

λjm (1 −
pjm

E[pjm]
)xjm for some λjm ∈ R. Dual feasible?

Good choice for λjm?

Inspiration: minimize
x∈RJ×M

+

{ZR(x) ∶ ∑
m∈M

xm = 1}

Lagrange multiplier ν∗ ∈ RJ

Marginal cost of assigning j to m at optimality =
∂ZR

(x∗)
∂xjm

= ν∗j

λjm = ν∗j

12 / 22

Routing penalty

Set Y πR = ∑
j,m

λjm (1 −
pjm

E[pjm]
)xjm for some λjm ∈ R. Dual feasible?

Good choice for λjm?

Inspiration: minimize
x∈RJ×M

+

{ZR(x) ∶ ∑
m∈M

xm = 1}

Lagrange multiplier ν∗ ∈ RJ

Marginal cost of assigning j to m at optimality =
∂ZR

(x∗)
∂xjm

= ν∗j

λjm = ν∗j

12 / 22

Routing penalty

Set Y πR = ∑
j,m

λjm (1 −
pjm

E[pjm]
)xjm for some λjm ∈ R. Dual feasible?

Good choice for λjm?

Inspiration: minimize
x∈RJ×M

+

{ZR(x) ∶ ∑
m∈M

xm = 1}

Lagrange multiplier ν∗ ∈ RJ

Marginal cost of assigning j to m at optimality =
∂ZR

(x∗)
∂xjm

= ν∗j

λjm = ν∗j

12 / 22

Routing penalty

Set Y πR = ∑
j,m

λjm (1 −
pjm

E[pjm]
)xjm for some λjm ∈ R. Dual feasible?

Good choice for λjm?

Inspiration: minimize
x∈RJ×M

+

{ZR(x) ∶ ∑
m∈M

xm = 1}

Lagrange multiplier ν∗ ∈ RJ

Marginal cost of assigning j to m at optimality =
∂ZR

(x∗)
∂xjm

= ν∗j

λjm = ν∗j

12 / 22

Key technical result

With the sequencing and routing penalites, we obtain in every sample path:

13 / 22

Key technical result

With the sequencing and routing penalites, we obtain in every sample path:

Penalized perfect information optimal value

≥

13 / 22

Key technical result

With the sequencing and routing penalites, we obtain in every sample path:

Penalized perfect information optimal value

≥

ZR
−

1

2
∑
j∈J

wj max
m∈M

Var[pjm]

E[pjm]

´¹¹¹¸¹¹¶
Ô⇒ Lower bound on V ∗

13 / 22

Key technical result

With the sequencing and routing penalites, we obtain in every sample path:

Penalized perfect information optimal value

≥

ZR
−

1

2
∑
j∈J

wj max
m∈M

Var[pjm]

E[pjm]

´¹¹¹¸¹¹¶
Ô⇒ Lower bound on V ∗

13 / 22

Key technical result

With the sequencing and routing penalites, we obtain in every sample path:

Penalized perfect information optimal value

≥

ZR
−

1

2
∑
j∈J

wj max
m∈M

Var[pjm]

E[pjm]

´¹¹¹¸¹¹¶
Ô⇒ Lower bound on V ∗

� Use Lagrange multipliers ν∗ to dualize the assignment constraint of the

penalized perfect information relaxation problem

� Can show x∗jmE[pjm]/pjm is the optimal routing

13 / 22

Key technical result

With the sequencing and routing penalites, we obtain in every sample path:

Penalized perfect information optimal value

≥

ZR
−

1

2
∑
j∈J

wj max
m∈M

Var[pjm]

E[pjm]

´¹¹¹¸¹¹¶
Ô⇒ Lower bound on V ∗

� Use Lagrange multipliers ν∗ to dualize the assignment constraint of the

penalized perfect information relaxation problem

� Can show x∗jmE[pjm]/pjm is the optimal routing

similar to the primal-dual scheme!

13 / 22

Performance result

The performance V R of the static routing policy satisfies:

V ∗ ≤ V R
≤ V ∗ +

1

2
∑
j∈J

wj(
M − 1

M
max
m∈M

E[pjm] + max
m∈M

Var[pjm]

E[pjm]
).

� Two terms in the performance gap:

– First: loss due to using convex relaxation (vs. fully optimal static routing)
– Second: loss due to using a static policy (vs. being adaptive)

� Corollary. If weights, mean processing times, and the coefficients of

variation of pjm are uniformly bounded, and if M/J
J→∞
ÐÐÐ→ 0, then

V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

In the regime with many jobs compared to machines, static routing is optimal!

14 / 22

Performance result

The performance V R of the static routing policy satisfies:

V ∗ ≤ V R
≤ V ∗ +

1

2
∑
j∈J

wj(
M − 1

M
max
m∈M

E[pjm] + max
m∈M

Var[pjm]

E[pjm]
).

� Two terms in the performance gap:

– First: loss due to using convex relaxation (vs. fully optimal static routing)
– Second: loss due to using a static policy (vs. being adaptive)

� Corollary. If weights, mean processing times, and the coefficients of

variation of pjm are uniformly bounded, and if M/J
J→∞
ÐÐÐ→ 0, then

V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

In the regime with many jobs compared to machines, static routing is optimal!

14 / 22

Performance result

The performance V R of the static routing policy satisfies:

V ∗ ≤ V R
≤ V ∗ +

1

2
∑
j∈J

wj(
M − 1

M
max
m∈M

E[pjm] + max
m∈M

Var[pjm]

E[pjm]
).

� Two terms in the performance gap:
– First: loss due to using convex relaxation (vs. fully optimal static routing)

– Second: loss due to using a static policy (vs. being adaptive)

� Corollary. If weights, mean processing times, and the coefficients of

variation of pjm are uniformly bounded, and if M/J
J→∞
ÐÐÐ→ 0, then

V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

In the regime with many jobs compared to machines, static routing is optimal!

14 / 22

Performance result

The performance V R of the static routing policy satisfies:

V ∗ ≤ V R
≤ V ∗ +

1

2
∑
j∈J

wj(
M − 1

M
max
m∈M

E[pjm] + max
m∈M

Var[pjm]

E[pjm]
).

� Two terms in the performance gap:
– First: loss due to using convex relaxation (vs. fully optimal static routing)
– Second: loss due to using a static policy (vs. being adaptive)

� Corollary. If weights, mean processing times, and the coefficients of

variation of pjm are uniformly bounded, and if M/J
J→∞
ÐÐÐ→ 0, then

V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

In the regime with many jobs compared to machines, static routing is optimal!

14 / 22

Performance result

The performance V R of the static routing policy satisfies:

V ∗ ≤ V R
≤ V ∗ +

1

2
∑
j∈J

wj(
M − 1

M
max
m∈M

E[pjm] + max
m∈M

Var[pjm]

E[pjm]
).

� Two terms in the performance gap:
– First: loss due to using convex relaxation (vs. fully optimal static routing)
– Second: loss due to using a static policy (vs. being adaptive)

� Corollary. If weights, mean processing times, and the coefficients of

variation of pjm are uniformly bounded, and if M/J
J→∞
ÐÐÐ→ 0, then

V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

In the regime with many jobs compared to machines, static routing is optimal!

14 / 22

Performance result

The performance V R of the static routing policy satisfies:

V ∗ ≤ V R
≤ V ∗ +

1

2
∑
j∈J

wj(
M − 1

M
max
m∈M

E[pjm] + max
m∈M

Var[pjm]

E[pjm]
).

� Two terms in the performance gap:
– First: loss due to using convex relaxation (vs. fully optimal static routing)
– Second: loss due to using a static policy (vs. being adaptive)

� Corollary. If weights, mean processing times, and the coefficients of

variation of pjm are uniformly bounded, and if M/J
J→∞
ÐÐÐ→ 0, then

V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

In the regime with many jobs compared to machines, static routing is optimal!

14 / 22

Examples
Weights and mean processing times generated randomly and fixed M :

number of jobs: J
0 200 400 600 800 1000

co
st

×10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M = 4, exponentially distributed jobs

performance of static routing policy

perfect information bound with penalty

perfect information bound without penalty

15 / 22

Examples
Relative gaps to penalized perfect information bounds, fixed M examples:

number of jobs: J
0 200 400 600 800 1000

re
la
ti
v
e
g
a
p

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M = 4, exponentially distributed jobs

16 / 22

Examples
Weights and mean processing times generated randomly and M = O(

√
J):

number of jobs: J
0 200 400 600 800 1000

co
st

0

1000

2000

3000

4000

5000

6000

M =
√

J, exponentially distributed jobs

performance of static routing policy

perfect information bound with penalty

perfect information bound without penalty

17 / 22

Examples
Relative gaps to penalized perfect information bounds, scaled M examples:

number of jobs: J
0 200 400 600 800 1000

re
la
ti
v
e
g
a
p

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M =
√

J, exponentially distributed jobs

18 / 22

Summary

� We study a class of static routing policies that can be easily computed

by solving a convex quadratic program that only depends on job

processing distributions through their expected values.

� Via an information relaxation duality approach, we provide a uniform

additive bound on the performance loss of this policy compared to the

performance of an optimal non-anticipative scheduling policy.

� The additive bound implies the static routing policy approaches optimality

in the asymptotic regime of many jobs.

� Other results:
– uniformly related machines: route jobs in proportion to machine speeds is

asymptotic optimal: xjm = sm/∑m′∈M sm′ .
– dependent jobs: static routing is close to optimality if job processing times

are slightly correlated.

19 / 22

Summary

� We study a class of static routing policies that can be easily computed

by solving a convex quadratic program that only depends on job

processing distributions through their expected values.

� Via an information relaxation duality approach, we provide a uniform

additive bound on the performance loss of this policy compared to the

performance of an optimal non-anticipative scheduling policy.

� The additive bound implies the static routing policy approaches optimality

in the asymptotic regime of many jobs.

� Other results:
– uniformly related machines: route jobs in proportion to machine speeds is

asymptotic optimal: xjm = sm/∑m′∈M sm′ .
– dependent jobs: static routing is close to optimality if job processing times

are slightly correlated.

19 / 22

Summary

� We study a class of static routing policies that can be easily computed

by solving a convex quadratic program that only depends on job

processing distributions through their expected values.

� Via an information relaxation duality approach, we provide a uniform

additive bound on the performance loss of this policy compared to the

performance of an optimal non-anticipative scheduling policy.

� The additive bound implies the static routing policy approaches optimality

in the asymptotic regime of many jobs.

� Other results:
– uniformly related machines: route jobs in proportion to machine speeds is

asymptotic optimal: xjm = sm/∑m′∈M sm′ .
– dependent jobs: static routing is close to optimality if job processing times

are slightly correlated.

19 / 22

Summary

� We study a class of static routing policies that can be easily computed

by solving a convex quadratic program that only depends on job

processing distributions through their expected values.

� Via an information relaxation duality approach, we provide a uniform

additive bound on the performance loss of this policy compared to the

performance of an optimal non-anticipative scheduling policy.

� The additive bound implies the static routing policy approaches optimality

in the asymptotic regime of many jobs.

� Other results:
– uniformly related machines: route jobs in proportion to machine speeds is

asymptotic optimal: xjm = sm/∑m′∈M sm′ .
– dependent jobs: static routing is close to optimality if job processing times

are slightly correlated.

19 / 22

Thank you!

20 / 22

Other results: uniformly related machines

� Machines differ only in their speeds: pjm = pj/sm: sm the speed of

machine m.

� Speed proportional routing: xjm = sm/S with S = ∑m′∈M sm′ (no

optimization).

The performance V S of the speed proportional routing satisfies:

V ∗ ≤ V S
≤ V ∗ +

1

2
∑
j∈J

wjE[pj]{(
2M − 1

S
−

1

κj
) + (

1

κj
−

1

S
)

Var[pj]

E[pj]2
},

where κj = sM if Var[pj]/E[pj]
2 > 1 and κj = s1 if Var[pj]/E[pj]

2 ≤ 1.

21 / 22

Other results: uniformly related machines

� Machines differ only in their speeds: pjm = pj/sm: sm the speed of

machine m.

� Speed proportional routing: xjm = sm/S with S = ∑m′∈M sm′ (no

optimization).

The performance V S of the speed proportional routing satisfies:

V ∗ ≤ V S
≤ V ∗ +

1

2
∑
j∈J

wjE[pj]{(
2M − 1

S
−

1

κj
) + (

1

κj
−

1

S
)

Var[pj]

E[pj]2
},

where κj = sM if Var[pj]/E[pj]
2 > 1 and κj = s1 if Var[pj]/E[pj]

2 ≤ 1.

21 / 22

Other results: uniformly related machines

� Machines differ only in their speeds: pjm = pj/sm: sm the speed of

machine m.

� Speed proportional routing: xjm = sm/S with S = ∑m′∈M sm′ (no

optimization).

The performance V S of the speed proportional routing satisfies:

V ∗ ≤ V S
≤ V ∗ +

1

2
∑
j∈J

wjE[pj]{(
2M − 1

S
−

1

κj
) + (

1

κj
−

1

S
)

Var[pj]

E[pj]2
},

where κj = sM if Var[pj]/E[pj]
2 > 1 and κj = s1 if Var[pj]/E[pj]

2 ≤ 1.

21 / 22

Other results: dependent jobs

� Assume there exist constants αj and βj such that

∣E[pjm∣F
π
t] −E[pjm]∣ ≤ αj ,

∣E[p2
jm∣F

π
t] −E[p2

jm]∣ ≤ βj ,

hold a.s. for every j ∈ J , m ∈M, for all π ∈ Π, and for all t ≤ Sπjm.

� Corollary. Suppose parameters are uniformly bounded. Let ᾱ ≜ ∑j∈J αj/J

and β̄ ≜ ∑j∈J βj/J . If ᾱM
3
2
J→∞
ÐÐÐ→ 0, β̄M/J

J→∞
ÐÐÐ→ 0, and M/J

J→∞
ÐÐÐ→ 0,

then
V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

� Assumption on ᾱ is necessary (even with a fixed number of machines) for

any static routing policy to be asymptotically optimal.

22 / 22

Other results: dependent jobs

� Assume there exist constants αj and βj such that

∣E[pjm∣F
π
t] −E[pjm]∣ ≤ αj ,

∣E[p2
jm∣F

π
t] −E[p2

jm]∣ ≤ βj ,

hold a.s. for every j ∈ J , m ∈M, for all π ∈ Π, and for all t ≤ Sπjm.

� Corollary. Suppose parameters are uniformly bounded. Let ᾱ ≜ ∑j∈J αj/J

and β̄ ≜ ∑j∈J βj/J . If ᾱM
3
2
J→∞
ÐÐÐ→ 0, β̄M/J

J→∞
ÐÐÐ→ 0, and M/J

J→∞
ÐÐÐ→ 0,

then
V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

� Assumption on ᾱ is necessary (even with a fixed number of machines) for

any static routing policy to be asymptotically optimal.

22 / 22

Other results: dependent jobs

� Assume there exist constants αj and βj such that

∣E[pjm∣F
π
t] −E[pjm]∣ ≤ αj ,

∣E[p2
jm∣F

π
t] −E[p2

jm]∣ ≤ βj ,

hold a.s. for every j ∈ J , m ∈M, for all π ∈ Π, and for all t ≤ Sπjm.

� Corollary. Suppose parameters are uniformly bounded. Let ᾱ ≜ ∑j∈J αj/J

and β̄ ≜ ∑j∈J βj/J . If ᾱM
3
2
J→∞
ÐÐÐ→ 0, β̄M/J

J→∞
ÐÐÐ→ 0, and M/J

J→∞
ÐÐÐ→ 0,

then
V R − V ∗

V ∗
J→∞
ÐÐÐ→ 0.

� Assumption on ᾱ is necessary (even with a fixed number of machines) for

any static routing policy to be asymptotically optimal.

22 / 22

