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Motivation

Ride flow in San Francisco
Source: #UberData

Bike sharing in NYC
Source: citibikenyc.com Logistics networks

Source: Schneider

The spatiotemporal distribution of resources can be controlled through pricing.

The underlying networks may be large and often contain some central locations
of key importance.

Challenge: optimal dynamic pricing policies may be very difficult to compute.

Research Question:

Can we design “simple” dynamic pricing policies that perform well in these problems?
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Problem formulation
m resources distributed over n locations; xi = number of resources at i

In each period:

1. A customer requests (i, j) with probability qij

▶ Private willingness-to-pay∼Fij(p) = Prob{valueij ≥ p}, independent
2. If location i has no resources (xi = 0), request is lost

3. If location i has resources (xi > 0):

▶ Platform selects price p
▶ With probability Fij(p), request is accepted:

xi → xi − 1 and xj → xj + 1 and revenue p collected

x1x2

x3

q31

q12

Problem: find a dynamic pricing policy that maximizes average revenue.
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Overview

Goal: find “simple” policies and establish bounds on suboptimality.

Large supply regime: locations n fixed, resources m → ∞.
▶ Problem is ≈ deterministic and fluid relaxations perform well:

⇒ an upper bound and a static policy.
▶ Appropriate for dense urban areas with high demand/supply per location.
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Overview

Goal: find “simple” policies and establish bounds on suboptimality.

Large supply regime: locations n fixed, resources m → ∞.
▶ Problem is ≈ deterministic and fluid relaxations perform well:

⇒ an upper bound and a static policy.
▶ Appropriate for dense urban areas with high demand/supply per location.

Supply-constrained large network regime: n → ∞, m → ∞, m
n fixed.

▶ The limiting behavior of the system retains a stochastic character.
▶ Static policies are not asymptotically optimal.
▶ Appropriate for metropolitan areas with many suburbs and densely

populated urban cores.

Main result: develop dynamic pricing policies and performance bounds
based on Lagrangian relaxations for networks with a “hub-and-spoke”
structure.

=⇒ Asymptotic optimality of a dynamic policy in the large network regime.
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High-level idea

hub

hub

hub
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s

price statically

price dynamically

Data: RideAustin

• Partition the city into hubs and spokes

• Price statically between hubs and
price dynamically based on “local”
information for all other requests

• In doing so, hubs pool resources and
we maintain a small number of resources
at each spoke (on average)
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Literature review
Shared vehicle systems:

Fluid relaxations: Waserhole and Jost (2016), Banerjee et al. (2016)
=⇒ Show fluid-policy is within a factor of m

m+n−1
of optimal.

Assignment and relocation of resources: Braverman et al. (2016), Ozkan and
Ward (2016), Banerjee et al. (2018), Kanoria and Qian (2020), Benjaafar et al.
(2018)

Strategic drivers: Bimpikis et al. (2019), Besbes et al. (2018), Afèche et al.
(2018)

Logistics and transportation networks:

ADP for capacity control: Adelman (2007)

Hub-and-spoke networks: Du and Hall (1997), Pirkul and Schilling (1998), Song
and Carter (2008)

Closed queueing networks: Gordon and Newell (1967), George and Xia (2011)

Lagrangian relaxations of weakly coupled stochastic DPs:

Methodology: Hawkins (2003), Adelman and Mersereau (2008), Bertsimas and
Mǐsić (2017), Brown and Smith (2018)

Applications:
▶ Network revenue management: Topaloglu (2009)
▶ Marketing: Bertsimas and Mersereau (2007), Caro and Gallien (2007)
▶ Multi-armed bandits: Brown and Zhang (2020)
▶ Inventory control: Miao et al (2020) 5/25



Outline

Motivation, problem, and literature review (done)

Hub-and-spoke networks
▶ Lagrangian relaxation: provides an upper bound and a feasible policy

▶ Performance analysis and asymptotic optimality

▶ Examples

More general networks: build upon methodology and theory above
▶ Multiple, interconnected hubs

▶ RideAustin Example

Conclusions
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Visualizing flow & hubs in ridesharing

Boston Chicago Los Angeles

We can identify networks of “related” neighborhoods that are the “hub” of the
city, into and out of which the most people flow.

Source: #UberData
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Visualizing flow & hubs in ridesharing

Philadelphia San Diego Washington, D.C.

We can identify networks of “related” neighborhoods that are the “hub” of the
city, into and out of which the most people flow.

Source: #UberData
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Hub-and-spoke network

x0

xn
x1

x2

x3

xi

qi0q0i
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Hub-and-spoke network

x0

xn
x1

x2

x3

xi

qi0q0i

n spokes, one hub and m resources.

Continuous-time model with Poisson arrivals
⇒ consider the embedded discrete-time Markov chain.

In each period, a request for (i, j) arrives with probability qij .

Service provider equivalently selects a demand level d = Fij(p) ∈ [0, 1].

One-period expected revenue rij(d) = d · F−1
ij (d), concave in d.

Relocations are instantaneous.

Resources only move when fulfilling requests.
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Hub-and-spoke network

x0

xn
x1

x2

x3

xi

qi0q0i

V OPT = max
π∈Π

lim
T→∞

1

T
· E

{
T∑

t=1

n∑
i=1

(
yi0,t · ri0

(
dπi0,t

)︸ ︷︷ ︸ + y0i,t · r0i
(
dπ0i,t

)
︸ ︷︷ ︸

)}

s.t. Dynamics of resources .
set of feasible policies

0-1 r.v. whether
request at t is (0, i)

Revenue of requests
from spoke i to hub

Revenue of requests
from hub to spoke i

8/25



Hub-and-spoke network

x0

xn
x1

x2

x3

xi

qi0q0i

V OPT = max
π∈Π

lim
T→∞

1

T
· E

{
T∑
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(
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(
dπi0,t

)︸ ︷︷ ︸ + y0i,t · r0i
(
dπ0i,t

)
︸ ︷︷ ︸

)}

s.t. Dynamics of resources .
set of feasible policies

0-1 r.v. whether
request at t is (0, i)

Revenue of requests
from spoke i to hub

Revenue of requests
from hub to spoke i

V OPT is independent of the “initial” state of the system

Optimal policies depend on the full system state x ≜ (x0, . . . , xn)
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Lagrangian relaxation

x0

x1
x2

xi

xn

x0 +
∑

i∈[n]

xi = m

V OPT = max
π∈Π

lim
T→∞

1

T
· E

T∑
t=1

n∑
i=1

(
yi0,t · ri0

(
dπi0,t

)
+ y0i,t · r0i

(
dπ0i,t

))
s.t. Dynamics of resources .

q0i

qi0

Relax constraint on hub resources:

x0 ≥ 0

⇐⇒ m−
∑
i∈[n]

xi ≥ 0

︸ ︷︷ ︸
Lagrange mult. λ≥0

x0

Infinite supply
of resources

Relaxed problem decouples over spokes!
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Lagrangian relaxation

x1
x2

xi

xn

x0 +
∑
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xi = m
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Properties of the Lagrangian relaxation

For any dual variable λ ≥ 0:

1. V̄ λ is independent of the initial state.

2. Weak duality holds, i.e., V̄ λ ≥ V OPT.

3. The Lagrangian relaxation decomposes over spokes:

V̄ λ = mλ+

n∑
i=1

hλ
i .

hλ
i ≜ optimal average

revenue of spoke i
with penalty λ

hλ
i equals the optimal value of a spoke-specific DP with ≈ m states.

Size of state space:

(a) Full DP: O(mn)

(b) n spoke-specific DPs from Lagrangian relaxation: O(n ·m)
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The spoke problem

Proposition. hλ
i equals the optimal value of:

max
di(x,in),
di(x,out),
pi(x)≥0

m∑
x=0

pi(x)

[
qi0 · ri0

(
di(x, out)

)
+ q0i · r0i

(
di(x, in)

)]
︸ ︷︷ ︸ − λ ·

m∑
x=0

x · pi(x)︸ ︷︷ ︸
s.t.

m∑
x=0

pi(x) = 1,

pi(x) · q0i · di(x, in) = pi(x+ 1) · qi0 · di(x+ 1, out),

di(0, out) = 0,

di(m, in) = 0.

Revenue from requests
between hub and spoke i

Penalty for holding
resources at spoke i

(flow balance)
pi: stationary
distribution of
resources at i

11/25



The spoke problem

Proposition. hλ
i equals the optimal value of:

max
di(x,in),
di(x,out),
pi(x)≥0

m∑
x=0

pi(x)

[
qi0 · ri0

(
di(x, out)

)
+ q0i · r0i

(
di(x, in)

)]
︸ ︷︷ ︸ − λ ·

m∑
x=0

x · pi(x)︸ ︷︷ ︸
s.t.

m∑
x=0

pi(x) = 1,

pi(x) · q0i · di(x, in) = pi(x+ 1) · qi0 · di(x+ 1, out),

di(0, out) = 0,

di(m, in) = 0.

Revenue from requests
between hub and spoke i

Penalty for holding
resources at spoke i

(flow balance)
pi: stationary
distribution of
resources at i

0 x x + 1 m· · · · · ·

q0i · di(x, in)

qi0 · di(x + 1, out)

11/25



The spoke problem

Proposition. hλ
i equals the optimal value of:

max
di(x,in),
di(x,out),
pi(x)≥0

m∑
x=0

pi(x)

[
qi0 · ri0

(
di(x, out)

)
+ q0i · r0i

(
di(x, in)

)]
︸ ︷︷ ︸ − λ ·

m∑
x=0

x · pi(x)︸ ︷︷ ︸
s.t.

m∑
x=0

pi(x) = 1,

pi(x) · q0i · di(x, in) = pi(x+ 1) · qi0 · di(x+ 1, out),
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di(m, in) = 0.

Revenue from requests
between hub and spoke i

Penalty for holding
resources at spoke i

(flow balance)
pi: stationary
distribution of
resources at i

0 x x + 1 m· · · · · ·

q0i · di(x, in)

qi0 · di(x + 1, out)

This problem is non-convex, but can be formulated as a convex problem
over pi(x).

11/25



Structural insights

x
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0.9

1

di
(

x, 0, i
)

di
(

x, i, 0
)

Monotonicity: The Lagrangian policy
controls di(x, out) and di(x, in) are
increasing and decreasing in x,

respectively.

0 1 2 3 4 5 6 7 8 9 10

x

0

0.05

0.1

0.15

0.2

0.25

0.3

p
ro
b

Log-concavity: The distributions of
resources in the spokes are discrete

log-concave.

leaving spoke i

entering spoke i

The Lagrangian policy can be implemented in the original system (the policy,
however, needs to drop requests when the hub is empty).
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The Lagrangian dual problem
The Lagrangian dual (convex) problem:

The perturbed Lagrangian dual
problem:

V R ≜ min
λ≥0

V̄ λ

V R(δ) ≜ min
λ≥0

{
V̄ λ − δ λ

}

Let λ∗ denote an optimal solution. From complementary slackness:

λ∗ ·
(
m−

total resources at spokes︷ ︸︸ ︷
n∑

i=1

m∑
x=0

x · p∗i (x)

)
= 0 .

optimal stationary distribution at λ∗

Will choose
δ = o(n) (later)

0

Probability hub
has ≤ 0 resources

x0D
is
tr
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u
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o
n
o
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h
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Performance analysis

Goal: V π(δ)︸ ︷︷ ︸
Lagrangian-based

policy

≤ V OPT ≤ V π(δ) + Error(n)︸ ︷︷ ︸
n→∞−−−−→
m
n

fixed
0
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[
X0(δ) = 0

]
.

hub depletion

probability with π(δ)

upper bound on

derivative of r(d)

detail

Proposition. The Lagrangian policy π(δ) satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ︸ ︷︷ ︸
set δ small!

+(r̄ + ω̄) · P
[
X0(δ) = 0

]
︸ ︷︷ ︸

set δ big!

.
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Hub depletion probability

Lemma. For any δ, we have X0(δ)︸ ︷︷ ︸
original

⪰FOSD X̃0(δ)︸ ︷︷ ︸
relaxed

.

x
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0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original system

relaxed system

Hub CDFs: X0(δ) ⪰FOSD X̃0(δ)

X̃0(δ) = m−
n∑

i=1

X̃i (δ)

(i) X̃i(δ) independent

(ii) pi(x̃) is log-concave

⇒ Bound m.g.f. by geometric r.v.

& apply Chernoff bound

Proposition. The hub depletion probability satisfies:

P[X0(δ) = 0] ≤ P[X̃0(δ) ≤ 0]

≤ e− β · δ2n

independent of n
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Performance result
Theorem. The Lagrangian policy π(δ) satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) · e−β· δ2n

︸ ︷︷ ︸
Optimal δ ≈

√
1
2β ·n·lnn

.

Moreover, with δ =
√

1
2β · n · lnn, we have

V OPT − V π(δ) ≤ O

(√
lnn

n

)
n→∞−−−−→
m
n fixed

0 .

Policy keeps, on average, O(
√
n · lnn) resources in the hub and O(1) resources

in the spokes.

Result holds when spokes are asymmetric.

16/25



Performance result
Theorem. The Lagrangian policy π(δ) satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) · e−β· δ2n︸ ︷︷ ︸

Optimal δ ≈
√

1
2β ·n·lnn

.

Moreover, with δ =
√

1
2β · n · lnn, we have

V OPT − V π(δ) ≤ O

(√
lnn

n

)
n→∞−−−−→
m
n fixed

0 .

Policy keeps, on average, O(
√
n · lnn) resources in the hub and O(1) resources

in the spokes.

Result holds when spokes are asymmetric.

16/25



Performance result
Theorem. The Lagrangian policy π(δ) satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) · e−β· δ2n︸ ︷︷ ︸

Optimal δ ≈
√

1
2β ·n·lnn

.

Moreover, with δ =
√

1
2β · n · lnn, we have

V OPT − V π(δ) ≤ O

(√
lnn

n

)
n→∞−−−−→
m
n fixed

0 .

Policy keeps, on average, O(
√
n · lnn) resources in the hub and O(1) resources

in the spokes.

Result holds when spokes are asymmetric.

16/25



Performance result
Theorem. The Lagrangian policy π(δ) satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) · e−β· δ2n︸ ︷︷ ︸

Optimal δ ≈
√

1
2β ·n·lnn

.

Moreover, with δ =
√

1
2β · n · lnn, we have

V OPT − V π(δ) ≤ O

(√
lnn

n

)
n→∞−−−−→
m
n fixed

0 .

Policy keeps, on average, O(
√
n · lnn) resources in the hub and O(1) resources

in the spokes.

Result holds when spokes are asymmetric.

16/25



Single hub examples

(a) symmetric spokes with qi0 = q0i =
1
2n

; (b) m
n

= 2; (c) all private values ∼ U[0, 1]
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Lagrangian policy is asymptotically optimal.
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More general networks

Western Addition

Marina

SOMA

Financial District

Mission District

Downtown

Russian Hill

Twin Peaks

North Beach

Nob Hill

The Castro

Haight

Pacific Heights

Richmond

Other

Golden Gate Park

Bernal Heights

Noe Valley

Chinatown

Presidio

Sunset District

Potrero Hill

Fishermans Wharf

Based on Uber GPS data (source: blogs.mathworks.com)
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Multiple hub networks

y1

y2

y3

hubs

x1

x2

xn

spokes

J hubs︷ ︸︸ ︷∑
j∈[J]

yj +

n spokes︷ ︸︸ ︷∑
i∈[n]

xi = m

Relax constraint on hub resources:∑
j∈[J]

yj ≥ 0 ⇔ m−
∑
i∈[n]

xi ≥ 0

︸ ︷︷ ︸
Lagrange mult. λ≥0

y1

y2

y3

Infinite supply of resources

=
⇒

=⇒

For each hub j:

(Flow In)j = (Flow Out)j︸ ︷︷ ︸
Lagrange mult. µj

Relaxation decouples across spokes and hubs!
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Properties of the Lagrangian relaxation
For any λ ≥ 0 and any µ ∈ RJ :

1. V̄ λ,µ is independent of the initial state.

2. Weak duality holds, i.e., V̄ λ,µ ≥ V OPT.

3. The Lagrangian relaxation decomposes over spokes and hubs:

V̄ λ,µ = mλ+
∑
i∈[n]

hλ,µ
i +

∑
j,j′∈[J]

qjj′ · νµjj′ .

spoke-specific DP for i hub-hub static pricing problem:
νµ
jj′ ≜ max

d∈[0,1]

{
rjj′ (d) + d · (µj′ − µj)

}
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With π(δ), spoke-hub requests are priced dynamically based on xi:

Spoke i - Hub j requests: use di(xi, outj)︸ ︷︷ ︸
from i to j

or di(xi, inj)︸ ︷︷ ︸
from j to i

.

With π(δ), hub-hub requests are priced statically:

Hub j - Hub j′ requests: use d∗jj′ ∈ arg max
d∈[0,1]

{
rjj′(d) + d · (µj′ − µj)

}
.
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{
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}
.

Similar performance bounds when hubs are “uniformly related.”

Can incorporate spoke-spoke connections and relocation times into bounds and
policies. detail
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RideAustin example

RideAustin a nonprofit ride-hailing company in Austin, Texas.

Dataset: 1.5 million transitions over 10 months (2016.6 - 2017.4).
⇒ Note: relocation times modeled (assumed deterministic)

Partition the city by clustering.

Challenge: how do we choose the hubs? How many hubs?
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Challenge: how to choose hubs

Trade-off:
▶ Small number of hubs ⇒ retain benefits of dynamic pricing.

▶ Large number of hubs ⇒ most resources flow between hubs and between
a hub and a spoke.

The approach:

1. Fix number of hubs: select best hubs to maximize the flow covered by hubs
(by solving an integer program).

2. Choose optimal number of hubs by evaluating our Lagrangian bound and
policy (incorporating travelling times and spoke-to-spoke transitions).
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RideAustin example
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7.8 Fluid relaxation bound

Lagrangian relaxation bound

Dynamic pricing policy with best δ∗

Static pricing policy with best δ∗

Fluid policy

Performance gap

Fluid policy:
(
V F − V (πF)

)
/V (πF) = 27.22%.

Static pricing policy with J = 1:
(
V R − V S(δ∗)

)
/V S(δ∗) = 8.87%. details

Dynamic pricing policy with J = 1:
(
V R − V π(δ∗)

)
/V π(δ∗) = 5.13%.
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Takeaways and future directions

We study dynamic pricing of relocating resources in large networks.

We develop performance bounds and policies based on Lagrangian relaxations.

▶ Hub-and-spoke networks: policies are within O(
√

lnn/n) of optimal.

▶ In extensive numerical experiments, the bounds and policies perform well
even when assumptions in theory are violated.

Operational takeaway: price statically between hubs and price dynamically for
all other requests.

Ongoing work:

▶ Further generalizing the theory & relaxing assumptions.

▶ Worst-case performance analysis of static pricing policies.

Reference: Balseiro, S.R., D.B. Brown, and C. Chen. 2019, “Dynamic pricing
of relocating resources in large networks,” Management Science (forthcoming).

https://papers.ssrn.com/abstract=3313737
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Two hub examples
(a) symmetric spokes with

qi1 =
1

3n
, q1i =

1

6n︸ ︷︷ ︸
hub 1

qi2 =
1

6n
, q2i =

1

3n︸ ︷︷ ︸
hub 2

;

(b) m = 2n; all private values ∼ U[0, 1].
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Ṽ
U

V
U

V
π

(

√

n log n
)

Ṽ
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Optimizing over static policies

In the large supply regime, P(i not empty) → 1 and these are equivalent.

In the large network regime, P(i not empty) < 1

How can we optimize over static policies?

Use the same relaxation, but restrict to static controls.

The Lagrangian dual problem:

V S,R = min
λ≥0

{
mλ+

n∑
i=1

hS
i (λ)

}

Policy converges to optimal static policy in large network regime (by
similar analysis).

We can show that static policies are sometimes strictly suboptimal. back

upper bound on

best static policy

spoke-specific

static pricing problem
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Optimizing over static policies

flow from i to 0 flow from 0 to i

fluid-based qi0di0 = q0id0i
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Single hub examples revisited
(a) symmetric spokes with qi0 = q0i =

1
2n

; (b) m
n

= 2; (c) all private values ∼ U[0, 1]
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Optimal static policy converges to 0.2 (better than fluid but sub-optimal).



Performance analysis

backGoal: V π(δ)︸ ︷︷ ︸
Lagrangian-based

policy

≤ V OPT ≤ V π(δ) + Error(n)︸ ︷︷ ︸
n→∞−−−−→
m
n

fixed
0
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V π(δ) ≤ V OPT ≤ V R

=
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V R − V R(δ)

]
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V R(δ)− V π(δ)
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Step (2)

+V π(δ)
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Step (1):

V R(δ) is generally not an upper bound for δ > 0, but sensitivity analysis yields:
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Performance analysis
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Step (2):

V π(δ): performance of Lagrangian policy in original system
(hub cannot hold negative number of resources)

V R(δ) : performance of Lagrangian policy in relaxed system
(hub can hold negative number of resources)
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Step (1): V R − V R(δ) ≤ r̄ · δ
m−δ .

Step (2): V R(δ)− V π(δ) ≤ (r̄ + ω̄) · P
[
X0(δ) = 0

]
.

Proposition. The Lagrangian policy π(δ) satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ︸ ︷︷ ︸
set δ small!

+(r̄ + ω̄) · P
[
X0(δ) = 0

]
︸ ︷︷ ︸

set δ big!

.



Incorporating Spoke-spoke Connections and
Relocation Times

back

Spoke-spoke requests: relax the relocation constraint at destination spoke:

(i, i′) : xi′,t+1 = xi′,t + Zi︸ ︷︷ ︸
Lagrange mult. νi,i′

∼Bernoulli(di)

Positive relocation times:

1. same relaxations to decompose over spokes.

2. enable resources moving to the spoke to be instantaneously available at
the spoke.

3. only need to track the number of resources in the spoke (use Little’s law
for resources leaving the spoke).
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