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Motivation
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Bike sharing in NYC
Ride flow in San Francisco Source: citibikenyc.com Logistics networks
Source: #UberData Source: Schneider

B The spatiotemporal distribution of resources can be controlled through pricing.

m The underlying networks may be large and often contain some central locations
of key importance.

m Challenge: optimal dynamic pricing policies may be very difficult to compute.

Research Question:

Can we design “simple” dynamic pricing policies that perform well in these problems?
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Problem formulation
m resources distributed over n locations; ; = number of resources at ¢

In each period:
1. A customer requests (4, j) with probability g;;
> Private willingness-to-pay~Fj;(p) = Prob{value;; > p}, independent
2. If location ¢ has no resources (z; = 0), request is lost
3. If location 4 has resources (z; > 0):

» Platform selects price p
> With probability F;;(p), request is accepted:
z; = x; — 1 and z; = x; + 1 and revenue p collected

Problem: find a dynamic pricing policy that maximizes average revenue.
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Overview
m Goal: find “simple” policies and establish bounds on suboptimality.

m Large supply regime: locations n fixed, resources m — oc.

» Problem is = deterministic and fluid relaxations perform well:
=> an upper bound and a static policy.
» Appropriate for dense urban areas with high demand/supply per location.
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Overview
m Goal: find “simple” policies and establish bounds on suboptimality.

m Large supply regime: locations n fixed, resources m — oc.

» Problem is = deterministic and fluid relaxations perform well:
=> an upper bound and a static policy.
» Appropriate for dense urban areas with high demand/supply per location.

m Supply-constrained large network regime: n — oo, m — oo, " fixed.

» The limiting behavior of the system retains a stochastic character.

» Static policies are not asymptotically optimal.

> Appropriate for metropolitan areas with many suburbs and densely
populated urban cores.

Main result: develop dynamic pricing policies and performance bounds
based on Lagrangian relaxations for networks with a “hub-and-spoke”
structure.

= Asymptotic optimality of a dynamic policy in the large network regime.
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High-level idea

NV e
S ﬁ a N\ ¢ price dynamically
\

\

e Partition the city into hubs and spokes

e Price statically between hubs and
price dynamically based on “local”
information for all other requests

e In doing so, hubs pool resources and
we maintain a small number of resources
at each spoke (on average)
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Literature review
Shared vehicle systems:

m Fluid relaxations: Waserhole and Jost (2016), Banerjee et al. (2016)
= Show fluid-policy is within a factor of —"*— of optimal.

m Assignment and relocation of resources: Braverman et al. (2016), Ozkan and
Ward (2016), Banerjee et al. (2018), Kanoria and Qian (2020), Benjaafar et al.
(2018)

m Strategic drivers: Bimpikis et al. (2019), Besbes et al. (2018), Afeche et al.
(2018)

Logistics and transportation networks:

m ADP for capacity control: Adelman (2007)

m Hub-and-spoke networks: Du and Hall (1997), Pirkul and Schilling (1998), Song
and Carter (2008)

m Closed queueing networks: Gordon and Newell (1967), George and Xia (2011)

Lagrangian relaxations of weakly coupled stochastic DPs:

m Methodology: Hawkins (2003), Adelman and Mersereau (2008), Bertsimas and
Migi¢ (2017), Brown and Smith (2018)

m Applications:

> Network revenue management: Topaloglu (2009)

> Marketing: Bertsimas and Mersereau (2007), Caro and Gallien (2007)
» Multi-armed bandits: Brown and Zhang (2020)

> Inventory control: Miao et al (2020)

5/25



Outline

Motivation, problem, and literature review (done)

Hub-and-spoke networks
> Lagrangian relaxation: provides an upper bound and a feasible policy

» Performance analysis and asymptotic optimality

» Examples

More general networks: build upon methodology and theory above
» Multiple, interconnected hubs

» RideAustin Example

Conclusions
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Visualizing flow & hubs in ridesharing

ol Use: Geopeta qppetr

Boston Chicago Los Angeles

We can identify networks of “related” neighborhoods that are the “hub” of the
city, into and out of which the most people flow.

Source: #UberData
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Visualizing flow & hubs in ridesharing

San Diego Washington, D.C.

We can identify networks of “related” neighborhoods that are the “hub” of the
city, into and out of which the most people flow.

Source: #UberData
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Hub-and-spoke network
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Hub-and-spoke network

n spokes, one hub and m resources.

Continuous-time model with Poisson arrivals
= consider the embedded discrete-time Markov chain.

In each period, a request for (i, ) arrives with probability g¢;;.

Service provider equivalently selects a demand level d = F;;(p) € [0, 1].
One-period expected revenue 7;;(d) = d - Fgl(d), concave in d.
Relocations are instantaneous.

Resources only move when fulfilling requests.
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Hub-and-spoke network

0-1 r.v. whether
request at ¢ is (0, 1)

T n
1 - T
VOFT = max  lim T ‘E (yio,t'rio(dio}t) + yoir Toi(dG,) )
WEH T—o0 t=1 =1

—_———
Revenue of requests Revenue of requests
set of feasible policies from spoke ¢ to hub from hub to spoke ¢

s.t. Dynamics of resources.
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Hub-and-spoke network

0-1 r.v. whether
request at ¢ is (0, 1)

T n
1
VOFT = max  lim T ‘E (yio,t'rio(d?o}t) + Yoir ~70i(dg;) )
e I T—o00 =1 =1 N———

—_———
Revenue of requests Revenue of requests
set of feasible policies from spoke ¢ to hub from hub to spoke ¢

s.t. Dynamics of resources.

m V°FT is independent of the “initial” state of the system

m Optimal policies depend on the full system state x £ (zg,...,z,)
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VOPT

Lagrangian relaxation

Relax constraint on hub resources:

//@ @\\ ZTo ZO

n

T
=max lim — EZ

men e T Lo Lo (yzo t - 7'10 10 t) + Yoi,t - Toi (dol t))
=1i=

s.t. Dynamics of resources.
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JORSRON

VOPT

Lagrangian relaxation

n

T
=max lim —-E E
7€l T—oo T
t=1i=1

s.t. Dynamics of resources.

Relax constraint on hub resources:

Tog > 0= m— Z:L’iz()
i€[n]

Lagrange mult. A>0

0+ Y xi=m
i€[n]

(yzo ¢ - 30 (dfo,¢) + yoi,e - T0i (d5;, t))
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/
/

Lagrangian relaxation

Relax constraint on hub resources:

Tog > 0= m— Z:L’iz()
1€[n]

\
Lagrange mult. A>0

o+ D, Ti=m
i€[n]

n

T n
S5 (v o) + s v (05,0)) 43 (m - 3o
. 1=1

s.t. Dynamics of resources.

T
7,t

)
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Lagrangian relaxation

Relax constraint on hub resources:

@ @ @ 15020<:>m72a:7;20

1€[n]

Infinite supply N
of resources \
Lagrange mult. A>0

0+ Y xi=m
i€[n]

T

—)\m+2mx lim l EZ

X e T (yiO,t Ti0 (dfo,t) + Yoi,t - Tos (dgi,t) - )‘x?,t)
t=1

s.t. Dynamics of resources.

' Relaxed problem decouples over spokes!
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Properties of the Lagrangian relaxation

For any dual variable A\ > 0:

1. V* is independent of the initial state.
2. Weak duality holds, i.e., V» > VOFT.

3. The Lagrangian relaxation decomposes over spokes:

n
VA=mA+) h}.

=1 h} £ optimal average
revenue of spoke i
with penalty A

10/25



Properties of the Lagrangian relaxation

For any dual variable A\ > 0:

1. V* is independent of the initial state.
2. Weak duality holds, i.e., V» > VOFT.

3. The Lagrangian relaxation decomposes over spokes:

n
VA=mA+) h}.

=1 h} £ optimal average
revenue of spoke i
with penalty A

h equals the optimal value of a spoke-specific DP with ~ m states.

Size of state space:
(a) Full DP: O(m™)
(b) n spoke-specific DPs from Lagrangian relaxation: O(n - m)
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The spoke problem

Proposition. h} equals the optimal value of:

max i pl(x) |:qi0 “ T30 (d,-(a:,out)) + qoi - Toi <di(x, in))] — A i x - pz(x)
z=0 z=0

d;(z,in),
d;(x,out),
pi(2)20 Revenue from requests Penalty for holding
m between hub and spoke i resources at spoke i
s.t. sz(ﬂ?) =1,
=0
pi(x) - qoi - di(z,in) = pi(x + 1) - gjo - di(x + 1, 0ut), (flow balance)
p;: stationary ) -
distribution of d;(0, out) =0,
resources at 4 di(m,in) = 0.
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The spoke problem

Proposition. h} equals the optimal value of:

max i pl(x) |:qi0 “ T30 (d,-(a:,out)) + qoi - Toi <di(x, in))] — A i x - pz(x)
z=0 z=0

d;(z,in),
d;(x,out),
pi(2)20 Revenue from requests Penalty for holding
m between hub and spoke i resources at spoke i
s.t. sz(ﬂ?) =1,
=0
pi(x) - qoi - di(z,in) = pi(x + 1) - gjo - di(x + 1, 0ut), (flow balance)
p;: stationary ) -
distribution of d;(0, out) =0,
resources at 4 di(m,in) = 0.
qoi - di(z,in)

qio - d; ($ +1, Out)

This problem is non-convex, but can be formulated as a convex problem
over p;(x).
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Structural insights
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Structural insights

leaving spoke 7

/—9 entering spoke i
021

0 5 10 15
z

Monotonicity: The Lagrangian policy
controls d;(x, out) and d;(z,in) are
increasing and decreasing in x,
respectively.

prob

03

0.2

0.1

Log-concavity: The distributions of

resources in the spokes are discrete

log-concave.

The Lagrangian policy can be implemented in the original system (the policy,
however, needs to drop requests when the hub is empty).
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The Lagrangian dual problem
The Lagrangian dual (convex) problem:
VR 2 min V*
A>0

Let \* denote an optimal solution. From complementary slackness:
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Let \* denote an optimal solution. From complementary slackness:

Distribution of hub resources

The Lagrangian dual problem

The Lagrangian dual (convex) problem:

V® £ min
A>0

)\*

Probability hub
as < 0 resources

V)\

total resources at spokes

i=12=0

optimal stationary distribution at A*

zo
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The Lagrangian dual problem

The Lagrangian dual problem: The perturbed Lagrangian dual problem:
VR £ min V* VE(S) & min{f/A LY
A>0 A>0

Let \* denote an optimal solution. From complementary slackness:

total resources at spokes

Probability hub
as < 0 resources

Distribution of hub resources

o
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The Lagrangian dual problem

The Lagrangian dual problem: The perturbed Lagrangian dual problem:
VR £ min V* VE(S) & Inin{f/A — §A}
A>0 A>0

Will choose
6 = o(n) (later)
Let \* denote an optimal solution. From complementary slackness:

total resources at spokes

Probability hub
as < 0 resources

Distribution of hub resources

o
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Lagrangian-based n— oo 0

policy ™ fixed

We know:

VTE) S VOtV = [VE-VEE)] + [VE0) - VIO +V70)

Step (1) Step (2)

Step (1): VR —VR(8) <7 2.

m—
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Performance analysis

Goal: V™) < VOT < V™(§) + Error(n)
— ~——
Lagrangian-based n— oo 0

policy ™ fixed

We know:

Vi) SV S VE = [VR - VR((F)} + [V“(é) - V”(a)} VT (6)

Step (1) Step (2)

Step (1): VF —V*(8) <7- 2.

m—ao

Step (2): VR(0) —V™(8) < (F+ @) - P[Xo(0) = 0].

upper bound on </ K, hub depletion

derivative of 7(d) probability with 7 (&)

Proposition. The Lagrangian policy w(9) satisfies

)

m—20

VT() S VO <VRESVT() +7-

+(f+w).1@[xo(5):o].

set § small! set § big!
14/25



Hub depletion probability
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original relaxed

Hub CDFs: X(8) >rosp Xo(d)
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Hub depletion probability

Lemma. For any §, we have X((8) =roso Xo(6).
—— ——

original relaxed

Hub CDFs: X(8) >rosp Xo(d)

f\.) (i) X;(5) independent

n
— § (ii) p; (&) is log-concave

= Bound m.g.f. by geometric r.v.
& apply Chernoff bound
Proposition. The hub depletion probability satisfies: /) independent of 7

B[Xo(6) = 0] < B[Xo(6) < 0] < e™ P
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Performance result

Theorem. The Lagrangian policy w(§) satisfies

1) 82

V‘"(é)SVoPTSVRSVﬂ((S)“F’F' ‘|‘(’F—|—@)-€_57.

m—20

Optimal § ~ ‘/%-u-ln n
Moreover, with § = , /% -n-Inn, we have

Inn

verr - veie) < o2 ) |22 0.

n

16/25



Performance result

Theorem. The Lagrangian policy w(§) satisfies

VIE) SVOTTSVESVI@) 4+ T et (T @) e

Optimal § ~

Moreover, with § = , /% -n-Inn, we have

1 n o0
V()PT_VTI’((S)SO( I:ZL) ;> 0.

m Policy keeps, on average, O(v/n - Inn) resources in the hub and O(1) resources
in the spokes.

m Result holds when spokes are asymmetric.
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Single hub examples

m

(a) symmetric spokes with gio = qoi = 5-; (b) = = 2; (c) all private values ~ U0, 1]

Fluid relaxation bound

Lagrangian relaxation bound

P ————— e T S

K . .
Lagrangian policy

——V’
0.19 ve
—¥— V7 (V/nlogn)
0.18 1 V(")
Fluid (static) policy
0.17
0.16

100 200 300 400 500 600 700 800 900 1000

m Lagrangian policy is asymptotically optimal.
m Fluid policy: performance gap (V¥ — V(x¥))/V (") = 2.
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More general networks

Based on Uber GPS data (source: blogs.mathworks.com)
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Multiple hub networks

J hubs n spokes

—— —
Z y; + Z Ty =M
JE[J] i€[n]

hubs spokes
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Multiple hub networks

Infinite supply of resources
1

J hubs n spokes
—— —
>yt aem
JEJ] i€[n]
Relax constraint on hub resources:

S ypz0em— Y ;>0
JelJ] i€[n]

Lagrange mult. A>0

_____________
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For each huMzu“:iple hUb networks

(Flow In); = (Flow Out);

1

1

1

I

Lagrange mult. 1 h
1

1

J hubs n spokes Sl
Pt U <SS
E yj+§ T, =m

JEJ] i€[n]
Relax constraint on hub resources:

Z yj20<:>m— Zzlzo
Jel] i€[n]

Lagrange mult. A>0 ":¢
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For each hub’]lzultiple hUb networks

(Flow In); = (Flow Out);

Lagrange mult. p;

J hubs n spokes
—— —
>yt aem
JEJ] i€[n]
Relax constraint on hub resources:

S ypz0em— Y ;>0
JelJ] i€[n]

Lagrange mult. A>0

Relaxation decouples across spokes and hubs!
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Properties of the Lagrangian relaxation
For any A > 0 and any p € R”:

1. VM s independent of the initial state.
2. Weak duality holds, i.e., V # > VOPT,
3. The Lagrangian relaxation decomposes over spokes and hubs:

VME=mA YR D a v

iE[n]/ 33" €[J] l

spoke-specific DP for ¢ hub-hub static pricing problem:
A
vy = defo] {rijr(@+d-(ny — )}
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spoke-specific DP for ¢ hub-hub static pricing problem:

N
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m With 7(d), spoke-hub requests are priced dynamically based on z;:

Spoke i - Hub j requests: use d;(x;,out;) or d;(zi,in;) .
——— N——

from 7 to j from j to ¢

m With 7(4), hub-hub requests are priced statically:

Hub j - Hub j' requests: use dj; € arg max, {rjy(d)+d- (py —p;)}.
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Properties of the Lagrangian relaxation

For any A > 0 and any p € R”:
1. VM s independent of the initial state.
2. Weak duality holds, i.e., VAm > JoPT,

3. The Lagrangian relaxation decomposes over spokes and hubs:

V)"”:m)\—i— Z h?’“ + Z qjj’ - 1/]‘-;-/ .

iE[n]/ 3.' €] l

spoke-specific DP for ¢ hub-hub static pricing problem:

vy & 5% {rygr(d) +d-(uj —p;)}
m With 7(d), spoke-hub requests are priced dynamically based on z;:

Spoke i - Hub j requests: use d;(x;,out;) or d;(zi,in;) .
——— N——

from 7 to j from j to ¢

m With 7(4), hub-hub requests are priced statically:
Hub j - Hub j requests: use d};; € arg max. {rij(d)+d- (uy —py)}-
j: S

m Similar performance bounds when hubs are “uniformly related.”
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Properties of the Lagrangian relaxation
For any A > 0 and any p € R”:

1. VM s independent of the initial state.
2. Weak duality holds, i.e., VAm > JoPT,
3. The Lagrangian relaxation decomposes over spokes and hubs:

V)"”:m)\—i— Z h?’“ + Z qjj’ - 1/]‘-;-/ .

iE[n]/ 4:3'€[J) l
spoke-specific DP for ¢ hub-hub static pricing problem:

V]Hj’ S dggﬁ] {’r‘jj/(d) +d- (/—Lj’ - lu'j)}

m With 7(d), spoke-hub requests are priced dynamically based on z;:

Spoke i - Hub j requests: use d;(x;,out;) or d;(zi,in;) .
——— N——

from 7 to j from j to ¢

m With 7(4), hub-hub requests are priced statically:

Hub j - Hub j' requests: use d}.; € arg max {r;;/(d) +d- (u; — p;)}.
77 delo,1] 77 J

Similar performance bounds when hubs are “uniformly related.”

m Can incorporate spoke-spoke connections and relocation times into bounds and

policies. 2025



RideAustin example

About this dataset

m RideAustin a nonprofit ride-hailing company in Austin, Texas.

m Dataset: 1.5 million transitions over 10 months (2016.6 - 2017.4).
= Note: relocation times modeled (assumed deterministic)

Everyone
May 12,2017by @

Jun 23,2017 - All activit

311.64MB
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= Note: relocation times modeled (assumed deterministic)

m Partition the city by clustering.
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RideAustin example

m RideAustin a nonprofit ride-hailing company in Austin, Texas.

m Dataset: 1.5 million transitions over 10 months (2016.6 - 2017.4).

= Note: relocation times modeled (assumed deterministic)

m Partition the city by clustering.
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RideAustin example

About this dataset

m RideAustin a nonprofit ride-hailing company in Austin, Texas. e
m Dataset: 1.5 million transitions over 10 months (2016.6 - 2017.4). Mfm’szy:
= Note: relocation times modeled (assumed deterministic) o

m Partition the city by clustering.
m Challenge: how do we choose the hubs? How many hubs?
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Challenge: how to choose hubs

m Trade-off:

» Small number of hubs = retain benefits of dynamic pricing.

> Large number of hubs = most resources flow between hubs and between
a hub and a spoke.
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Challenge: how to choose hubs

m Trade-off:

» Small number of hubs = retain benefits of dynamic pricing.

> Large number of hubs = most resources flow between hubs and between
a hub and a spoke.

m The approach:

1. Fix number of hubs: select best hubs to maximize the flow covered by hubs
(by solving an integer program).

2. Choose optimal number of hubs by evaluating our Lagrangian bound and
policy (incorporating travelling times and spoke-to-spoke transitions).
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latitude

m RideAustin a nonprofit ride-hailing company in Austin, Texas.
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m Partition the city by clustering.
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RideAustin example

About this dataset

m RideAustin a nonprofit ride-hailing company in Austin, Texas. N

m Dataset: 1.5 million transitions over 10 months (2016.6 - 2017.4). ’

= Note: relocation times modeled (assumed deterministic)

m Partition the city by clustering.

m Select hubs to maximize the flow covered by hubs.
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Performance gap

average revenue per request

RideAustin example

78 Fluid rel3xation bound
76t Lagrangian relaxation bound
741
72+ Dynamic pricing policy with best §*
A
7t Static pricing policy with best 5* ]
a5 |
6.8 -
6.6 -
6.4
6.2
Fluid policy
61 | | i i j
1 2 5 6

number of hubs

m Fluid policy: (V¥ —V(x"))/V(x") = 27.22%.

m Static pricing policy with J = 1: (VR —

VE(6%))/VE(5*) = 8.87%.
m Dynamic pricing policy with J = 1: (V* — V™ (6%))/V™(6*) = 5.13%.
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Takeaways and future directions

We study dynamic pricing of relocating resources in large networks.

m We develop performance bounds and policies based on Lagrangian relaxations.

» Hub-and-spoke networks: policies are within O(y/Inn/n) of optimal.

> In extensive numerical experiments, the bounds and policies perform well
even when assumptions in theory are violated.
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Takeaways and future directions

We study dynamic pricing of relocating resources in large networks.

m We develop performance bounds and policies based on Lagrangian relaxations.
» Hub-and-spoke networks: policies are within O(y/Inn/n) of optimal.
> In extensive numerical experiments, the bounds and policies perform well

even when assumptions in theory are violated.

m Operational takeaway: price statically between hubs and price dynamically for
all other requests.

m Ongoing work:
» Further generalizing the theory & relaxing assumptions.

» Worst-case performance analysis of static pricing policies.

Reference: Balseiro, S.R., D.B. Brown, and C. Chen. 2019, “Dynamic pricing

of relocating resources in large networks,” Management Science (forthcoming).

https://papers.ssrn.com/abstract=3313737
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Two hub examples

(a) symmetric spokes with

=g 1T gy 2= G 1T 3y,
hub 1 hub 2
(b) m = 2n; all private values ~ UJ0, 1].
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Two hub examples

(a) symmetric spokes with

qilt = 35—, q1i = 5 qi2 = —, q2i = 5
n

3n’ 6n 6n’
hub 1 hub 2

(b) m = 2n; all private values ~ UJ0, 1].
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Two hub examples

(a) symmetric spokes with
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6n 7T 3,
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(a) symmetric spokes with

Two hub examples
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Optimizing over static policies

‘ flow from 7 to 0 flow from 0 to ¢
fluid-based giodio = qoidoi
static | P(i not empty) X giodio = goido: X P(0 not empty)

In the large supply regime, P(i not empty) — 1 and these are equivalent.
In the large network regime, P(i not empty) < 1

How can we optimize over static policies?

Use the same relaxation, but restrict to static controls.
The Lagrangian dual problem:

spoke-specific
static pricing problem

n
S, R __ 3 S
upper bc?und on _~ VR = min {m)\ + E h$(N) }
best static policy = i=1

m Policy converges to optimal static policy in large network regime (by
similar analysis).
m We can show that static policies are sometimes strictly suboptimal.



Single hub examples revisited

(a) symmetric spokes with gio = qoi = 5-; (b) = = 2; (c) all private values ~ U0, 1]

0.26 T T T T 0.218
Fluid relaxation bound Lagrangian relaxation bound
0.25 + + + + + + + +
0217 4
0.24 1
023k 1 0.216 b

Lagrangian policy

Lagrangian relaxation bound

A — f — 0.215 B
Lagrangian policy 7] P
0.214 7 1
B z P
o Z
d
019k Optimal static policy 1 oz1sk / |
/
/
018 1 Y
0212t/
017 Fluid (static) policy | 4
016 . . . . . . . . 0211 . . . . . . . !
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m Lagrangian policy is asymptotically optimal.
= Fluid policy: performance gap (VF — V(xF))/V (") = 2.

m Optimal static policy converges to 0.2 (better than fluid but sub-optimal).
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We know:
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VE(8) is generally not an upper bound for § > 0, but sensitivity analysis yields:
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Performance analysis
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—— ——
Lagrangian-based nT
policy 10 fixed
We know: "

VT(6) S VOt <VE = [VR — VR(é)} + [Vﬁ(a) — V(&) +V™(5)

Step (1) Step (2)
Step (1):

VE(8) is generally not an upper bound for § > 0, but sensitivity analysis yields:
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Performance analysis

Goal: V™) < VOPT < V™(§) + Error(n)
—~ ~—
Lagrangian-based nooo , o

policy . fired

We know:

VT(6) S VOt <VE = [VR — VR(é)} + [VR((S) — V(&) +V™(5)

Step (1) Step (2)
Step (2):

m V™ (9): performance of Lagrangian policy in original system
(hub cannot hold negative number of resources)

m V*(§) : performance of Lagrangian policy in relaxed system
(hub can hold negative number of resources)



We know:

Vﬂ'(é) S VOPT S VR — |:VR _

Step (2):

Goal:

Performance analysis

V7(d)
——
Lagrangian-based
policy

< VO < V7™(6) + Error(n)

~——
n-— oo

— 0
2 fixed

number of resources in the hub

original system
L | — — — relaxed system
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We know:
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Step (2)

Step (2): 12
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derivative of r(d)




Performance analysis

Goal: V™) < VOPT < V™(§) + Error(n)

S~ ~———
Lagrangia_m—based nooo , o
policy 2 fixed

We know:

VT(5) < VOPT < VR = [VR - VR(&)} + [VR(é) - V”(a)} LVT(S)

Step (1) Step (2)
Step (2): 12 — ‘ ‘ ‘
original system

10 — — — relaxed system

“compensate” by rewarding 7 + &
in exchange for preventing
state transition whenever hub empties

number of resources in the hub
S

~ - TAA P, ~AAA ~AEA ~AA



Performance analysis

Goal: V™) < VOPT < V™(§) + Error(n)
—~ ~—
Lagrangian-based nooo , o

policy . fired

We know:

VT(5) < VOPT < VR = [VR - VR(a)} + [VR(a) — VT (8)] +VT(8)

Step (1) Step (2)
Step (2):

By comparing the value functions in the relaxed and original systems:

V() = VT(0) < (7 + @) P[Xo(0) = 0]

]

upper bound on hub depletion
derivative of r(d) probability with 7(§)



Performance analysis

Goal: V™) < VOPT < V™(§) + Error(n)
—~ ~—
Lagrangian-based nooo , o

policy . fired

We know:

VT(5) < VOPT < VR = [VR - Vﬁ(a)} + [VR((S) - v”(a)} LVT(S)

Step (1) Step (2)

Step (1): V® — VR(§) <7 -2

Step (2): VE(0) — V™(8) < (7 +w) - P[Xo(5) = 0].

Proposition. The Lagrangian policy 7(9) satisfies
5
VT() S VO <VELSVT() +7-
(5) S VO < VRS VIO 47

——
set § smalll set § big!

+ (7 + @) .P[Xo(é) = 0} .




Incorporating Spoke-spoke Connections and
Relocation Times

Spoke-spoke requests: relax the relocation constraint at destination spoke:
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Incorporating Spoke-spoke Connections and
Relocation Times

Spoke-spoke requests: relax the relocation constraint at destination spoke:

(i,i") @ Ty 441 = Tir g + Zi —> ~Bernoulli(d;)

Lagrange mult. v; ;/

Positive relocation times:
1. same relaxations to decompose over spokes.
2. enable resources moving to the spoke to be instantaneously available at
the spoke.
3. only need to track the number of resources in the spoke (use Little's law
for resources leaving the spoke).



