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The Line Dance

Queuing theory, the mathematical study of lines, helps businesses, call centers, computer
networks and others figure out how to keep things moving.

Multiple servers, multiple lines Multiple servers, single line
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Resource pooling significantly improves service
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Resource pooling: known fact

N servers: job arrival rate A < 1, server processing rate p =1

A<l A< A< A<l
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Resource pooling: known fact

N servers: job arrival rate A < 1, server processing rate p =1

Without resource pooling: With resource pooling:
A< A<1 A<1 >\<1 >\<1 >\<1
vS.
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# jobs in system: N -2 =5
linear constant
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Can resource pooling be achieved in decentralized systems?
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Can resource pooling be achieved in decentralized systems?

Decentralization boosts security, privacy, and scalability
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Motivation

m Goal: design mechanism to incentivize resource pooling in a decentralized
setting.

m Applications: Decentralized computing marketplaces on blockchains
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Motivation

m Goal: design mechanism to incentivize resource pooling in a decentralized
setting.

m Applications: Decentralized computing marketplaces on blockchains

8'O|eITI dakash iExec

Golem Network Akash Network iExec
Market cap: $170M Market cap: $320M Market cap: $75M

m Essential aspects of the problem:
> Large-scale system: number of servers N is large

» Servers have limited information about one another
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Main results
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Main results

m Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

— System dynamics and performance match those under
centralized control in the asymptotics
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Main results

m Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

— System dynamics and performance match those under
centralized control in the asymptotics

m Propose an approximation-based analytical framework
» Simplifies the design and analysis of token-based mechanisms
» Provides tight theoretical guarantees

» Can be applied to more general settings
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Model setup

m N strategic servers

m Jobs arrive with Poisson(\) where A < 1; capacity units arrive with Poisson(1)

A<l
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Model setup

N strategic servers
Jobs arrive with Poisson(\) where A < 1; capacity units arrive with Poisson(1)

Costs: A< 1
1. Holding cost: each waiting job costs one per unit of time J

2. Processing cost: serving a job costs ¢ > 0

Servers’ objective: minimizing own long-run average total cost
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Model setup

N strategic servers

Jobs arrive with Poisson(\) where A < 1; capacity units arrive with Poisson(1)

Costs: A<1
1. Holding cost: each waiting job costs one per unit of time
2. Processing cost: serving a job costs ¢ > 0

Servers’ objective: minimizing own long-run average total cost

Limited information: =1

(a) A server’s arrivals and actions are private information

(b) Precise knowledge of number of servers N not required (except knowing
that it is relative large)
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Related Literature

Resource pooling:
m Power of resource pooling: [Tsitsiklis and Xu, 2013]

m Decentralized setup with two servers: [Hu and Caldentey, 2023]

Mean-field equilibrium:

m Analysis of complex operational problems: [lyer et al., 2014], [Balseiro et al., 2015],
[Kanoria and Saban, 2021], [Arnosti et al., 2021]

m Fluid mean-field equilibrium similar in spirit to [Balseiro et al., 2015]

Scrip system:
m Analysis of scrip system: [Kash et al., 2007], [Kash et al., 2015], [Johnson et al.,
2014], [Bo et al., 2018]
Other related work:

m Cooperative game model: [Anily and Haviv, 2010], [Anily and Haviv, 2014], [Karsten
et al., 2015]

m Supermarket game: [Xu and Hajek, 2013], [Yang et al., 2019]
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Outline

Motivation, research question, and literature review

Token-based mechanism
> Solution concept: Fluid mean-field equilibrium (FMFE)

» Characterization of FMFE

» Designing key element of mechanism

FMFE strategy as near-optimal best response
» Asymptotic analysis for large markets

» Numerical analysis for small markets
Extension to heterogeneous servers

Takeaway
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Token-based mechanism

In the mechanism, a server can:

m Request help from others without recall at any time.

m When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall.
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» Requested jobs relocate to shared pool

» Each request costs one token

m When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall. If a server offers help:

» The oldest job in shared pool is served (if pool is non-empty)
> A token is rewarded with prob ¢ € (0, 1)

m A shared pool to match requests and provisions of help in FCFS order.

» Shared pool queue length is unobservable, but servers can infer it.

m A token system to mitigate free riding.
m Servers interact via shared pool
m The value of ¢ is critical to system performance
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Equilibrium concept: Fluid mean-field equilibrium

Approximation methodology similar to (Balseiro et al. 2015)

m Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average —

» Expected waiting time in shared pool is constant w > 0: value determined
endogenously by equilibrium

» Probability that shared pool is non-empty is constant: equal to ¢ !
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Approximation methodology similar to (Balseiro et al. 2015)

m Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average —

» Expected waiting time in shared pool is constant w > 0: value determined
endogenously by equilibrium

» Probability that shared pool is non-empty is constant: equal to ¢ !

m Fluid relaxation: allow # of tokens to be negative; only require that tokens
satisfy the flow balance constraint in expectation

m After simplification: server’s best response depends only on its queue length

= Closed-form characterization (next slide)

m Fluid mean-field equilibrium (FMFE):

w € H(w)

. - . induced waiting time when all servers
conjectured waiting time
follow best responses to w
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Server’s best response

Closed-form solution: threshold policy w.r.t. queue length:

m Request help only when queue length exceeds a threshold % (which
depends on ¢ and w)

m Offer help only when queue is empty
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Best response when w < 1

(Unique) best response when w < 1:

a ! k decreases with ¢

(I =p)A 1
request help whenever
PA ‘ )\/) a job arrives
A 1
A 1

1
\s offer help with prob 2
1\> offer help with prob 1 ¢

o <A o> A
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Optimal value of ¢

requesting help rate

——expected queue length of a server

offering help rate 25
2
0.4 ,\

02 !
\) requesting help rate
0.1

expected queue length
of a server

Proposition. The expected total number of jobs in system, denoted by

Qx(¢), satisfies:

1. When ¢ < X: limpy o0 QE(¢)/N = q(¢) >0
2. When ¢ > X: Qs(¢) = 125
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Optimal value of ¢

—offering help rate

requesting help rate

offering help rate

J N

\) request

ing help rate

——expected queue length of a server

expected queue leH
of a server

gth

Main result. The optimal value is ¢ = A\. Moreover, this induces complete

resource poo

ing: it is each server's best strategy to (i)

request help whenever a job arrives, (ii) offer help when queue is empty.

= System’s dynamics and performance match those under centralized control
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FMFE as good approximation of servers' strategics
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Asymptotic analysis for large markets

m Servers i > 2 follow FMFE strategy; server one minimizes own cost.
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Asymptotic analysis for large markets

m Servers i > 2 follow FMFE strategy; server one minimizes own cost.
m Optimal value of fluid mean-field problem with w = 0: cA + E[QF}

E[QF]: a server's queue length when follows the FMFE strategy in the fluid problem

Lemma. If server one also follows FMFE strategy, its time-average total cost is
upper-bounded by cA + E[QF] + %’\‘ﬁ)

Lemma. Regardless of the strategy server one uses, its time-average total cost
is lower-bounded by cA + E[Q7] — 2022 for any § € (0,1).

Proof sketch:
1. A relaxation to server one's problem: empower the server to empty the shared
pool at the end of every interaction with shared pool
= Request help only when a job arrives
2. A coupling argument and a drift analysis to show:
(a) shared pool’s queue length transitions to stationary distribution quickly as N — oo

(b) in stationary distribution, shared pool is non-empty with probability ¢ — C(]\?iif’g)
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Analysis for small market

m Mechanism uses ¢ = .

m Consider the fluid setup: tokens can go negative but expected rates of earning
and spending tokens are equal.

m Servers ¢ > 2 adopt complete resource pooling; server one is strategic and
minimizes own cost.
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Analysis for small market

m Mechanism uses ¢ = .

m Consider the fluid setup: tokens can go negative but expected rates of earning
and spending tokens are equal.

m Servers ¢ > 2 adopt complete resource pooling; server one is strategic and
minimizes own cost.

Grant server one additional information edge:

m Complete information about the shared pool's queue length (denoted by qo)

= Optimal strategy depends only on two states: ¢; (own queue length) and ¢o

—> Tractable optimization problem!
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Numerical results
(a) job processing cost ¢ = 1; (b) job arrival rate A € {0.7,0.8,0.9}

Cost of complete resource pooling— Cost of optimal strategy
Cost of optimal strategy

Sub-optimality gap =

0.45

0.4

0.35

0.3

0.25

Sub-Optimality Gap

m The value of playing strategically is small even with few servers (and when
server one can perfectly monitor the shared pool)
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Extension: heterogeneous servers

m For each server i: job arrival rate A; and processing rate p;; let p; = 2i

Hq

-Assume0<£§pi§ﬁ<1and0<A§)\i§5\forallservers
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Extension: heterogeneous servers

m For each server i: job arrival rate A; and processing rate p;; let p; = 2i

i
] Assume0<£§pi§ﬁ<1and0<A§)\i§5\forallservers

m Consider token-based mechanism with ¢ = p

Proposition It is FMFE and approximate equilibrium for each server to (i) request
help for all incoming jobs, and (ii) offer help with probability p;/p when a capacity
unit arrives, when number of servers is large.

Zi Ai 21 Ai
o |
TZi Hi Tzi Xi/p

m Number of jobs in centralized setting: between % and %ﬁ

Number of jobs within our mechanism: 1%5

m Job processing costs are allocated o< p; versus o< \;

= Costs allocated fairly in our mechanism!
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Summary

m We study incentivizing resource pooling in a decentralized setting, where
servers have limited information about others

m Operational takeaway: A simple token-based mechanism incentivizes
complete resource pooling when number of servers is large

» Analysis based on fluid mean-field equilibrium

» Numerical results show that benefit from unilateral deviation is small even
with only a few servers
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Summary

m We study incentivizing resource pooling in a decentralized setting, where
servers have limited information about others

m Operational takeaway: A simple token-based mechanism incentivizes
complete resource pooling when number of servers is large

» Analysis based on fluid mean-field equilibrium

» Numerical results show that benefit from unilateral deviation is small even
with only a few servers

m Ongoing work. Applying the mechanism and analytical framework to
other decentralized systems, e.g., multi-hospital kidney exchange.

Reference: C. Chen, Y. Chen, and P. Qian. 2023. Incentivizing Resource
Pooling. Under review.

Working paper available at https://papers.ssrn.com/abstract=4586771
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