
Incentivizing Resource Pooling

Chen Chen

November 2023

Joint work with:

Yilun Chen (CUHK-SZ) and Pengyu Qian (Purdue)

1/20

Resource pooling significantly improves service

2/20

Resource pooling: known fact

N servers: job arrival rate λ < 1, server processing rate µ = 1

λ < 1 λ < 1 λ < 1 λ < 1

· · ·

µ = 1 µ = 1 µ = 1 µ = 1

3/20

Resource pooling: known fact

N servers: job arrival rate λ < 1, server processing rate µ = 1

Without resource pooling:

λ < 1 λ < 1 λ < 1

· · ·

µ = 1 µ = 1 µ = 1

vs.

With resource pooling:

λ < 1 λ < 1 λ < 1

· · ·

µ = N

jobs in system: N · λ
1−λ

λ
1−λ

linear constant

3/20

Can resource pooling be achieved in decentralized systems?

Decentralization boosts security, privacy, and scalability

4/20

Can resource pooling be achieved in decentralized systems?

Decentralization boosts security, privacy, and scalability

4/20

Motivation

Goal: design mechanism to incentivize resource pooling in a decentralized
setting.

Applications: Decentralized computing marketplaces on blockchains

Golem Network

Market cap: $170M

Akash Network

Market cap: $320M
iExec

Market cap: $75M

Essential aspects of the problem:

▶ Large-scale system: number of servers N is large

▶ Servers have limited information about one another

5/20

Motivation

Goal: design mechanism to incentivize resource pooling in a decentralized
setting.

Applications: Decentralized computing marketplaces on blockchains

Golem Network

Market cap: $170M

Akash Network

Market cap: $320M
iExec

Market cap: $75M

Essential aspects of the problem:

▶ Large-scale system: number of servers N is large

▶ Servers have limited information about one another

5/20

Motivation

Goal: design mechanism to incentivize resource pooling in a decentralized
setting.

Applications: Decentralized computing marketplaces on blockchains

Golem Network

Market cap: $170M

Akash Network

Market cap: $320M
iExec

Market cap: $75M

Essential aspects of the problem:

▶ Large-scale system: number of servers N is large

▶ Servers have limited information about one another

5/20

Main results

Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

=⇒ System dynamics and performance match those under
centralized control in the asymptotics

Propose an approximation-based analytical framework

▶ Simplifies the design and analysis of token-based mechanisms

▶ Provides tight theoretical guarantees

▶ Can be applied to more general settings

6/20

Main results

Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

=⇒ System dynamics and performance match those under
centralized control in the asymptotics

Propose an approximation-based analytical framework

▶ Simplifies the design and analysis of token-based mechanisms

▶ Provides tight theoretical guarantees

▶ Can be applied to more general settings

6/20

Main results

Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

=⇒ System dynamics and performance match those under
centralized control in the asymptotics

Propose an approximation-based analytical framework

▶ Simplifies the design and analysis of token-based mechanisms

▶ Provides tight theoretical guarantees

▶ Can be applied to more general settings

6/20

Main results

Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

=⇒ System dynamics and performance match those under
centralized control in the asymptotics

Propose an approximation-based analytical framework

▶ Simplifies the design and analysis of token-based mechanisms

▶ Provides tight theoretical guarantees

▶ Can be applied to more general settings

6/20

Main results

Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

=⇒ System dynamics and performance match those under
centralized control in the asymptotics

Propose an approximation-based analytical framework

▶ Simplifies the design and analysis of token-based mechanisms

▶ Provides tight theoretical guarantees

▶ Can be applied to more general settings

6/20

Main results

Develop a simple token-based mechanism that incentives
complete resource pooling in private information setting when
N is large

=⇒ System dynamics and performance match those under
centralized control in the asymptotics

Propose an approximation-based analytical framework

▶ Simplifies the design and analysis of token-based mechanisms

▶ Provides tight theoretical guarantees

▶ Can be applied to more general settings

6/20

Model setup

N strategic servers

Jobs arrive with Poisson(λ) where λ < 1; capacity units arrive with Poisson(1)

Costs:

1. Holding cost: each waiting job costs one per unit of time

2. Processing cost: serving a job costs c ≥ 0

Servers’ objective: minimizing own long-run average total cost

Limited information:

(a) A server’s arrivals and actions are private information

(b) Precise knowledge of number of servers N not required (except knowing
that it is relative large)

λ < 1

µ = 1

7/20

Model setup

N strategic servers

Jobs arrive with Poisson(λ) where λ < 1; capacity units arrive with Poisson(1)

Costs:

1. Holding cost: each waiting job costs one per unit of time

2. Processing cost: serving a job costs c ≥ 0

Servers’ objective: minimizing own long-run average total cost

Limited information:

(a) A server’s arrivals and actions are private information

(b) Precise knowledge of number of servers N not required (except knowing
that it is relative large)

λ < 1

µ = 1

7/20

Model setup

N strategic servers

Jobs arrive with Poisson(λ) where λ < 1; capacity units arrive with Poisson(1)

Costs:

1. Holding cost: each waiting job costs one per unit of time

2. Processing cost: serving a job costs c ≥ 0

Servers’ objective: minimizing own long-run average total cost

Limited information:

(a) A server’s arrivals and actions are private information

(b) Precise knowledge of number of servers N not required (except knowing
that it is relative large)

λ < 1

µ = 1

7/20

Related Literature

Resource pooling:

Power of resource pooling: [Tsitsiklis and Xu, 2013]

Decentralized setup with two servers: [Hu and Caldentey, 2023]

Mean-field equilibrium:

Analysis of complex operational problems: [Iyer et al., 2014], [Balseiro et al., 2015],

[Kanoria and Saban, 2021], [Arnosti et al., 2021]

Fluid mean-field equilibrium similar in spirit to [Balseiro et al., 2015]

Scrip system:

Analysis of scrip system: [Kash et al., 2007], [Kash et al., 2015], [Johnson et al.,

2014], [Bo et al., 2018]

Other related work:

Cooperative game model: [Anily and Haviv, 2010], [Anily and Haviv, 2014], [Karsten

et al., 2015]

Supermarket game: [Xu and Hajek, 2013], [Yang et al., 2019]

8/20

Outline

Motivation, research question, and literature review

Token-based mechanism
▶ Solution concept: Fluid mean-field equilibrium (FMFE)

▶ Characterization of FMFE

▶ Designing key element of mechanism

FMFE strategy as near-optimal best response

▶ Asymptotic analysis for large markets

▶ Numerical analysis for small markets

Extension to heterogeneous servers

Takeaway

9/20

Token-based mechanism

In the mechanism, a server can:

Request help from others without recall at any time.

▶ Requested jobs relocate to shared pool

▶ Each request costs one token

When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall.

If a server offers help:

▶ The oldest job in shared pool is served (if pool is non-empty)

▶ A token is rewarded with prob ϕ ∈ (0, 1)

A shared pool to match requests and provisions of help in FCFS order.

▶ Shared pool queue length is unobservable, but servers can infer it.

A token system to mitigate free riding.

Servers interact via shared pool

The value of ϕ is critical to system performance

10/20

Token-based mechanism

In the mechanism, a server can:

Request help from others without recall at any time.

▶ Requested jobs relocate to shared pool

▶ Each request costs one token

When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall. If a server offers help:

▶ The oldest job in shared pool is served (if pool is non-empty)

▶ A token is rewarded with prob ϕ ∈ (0, 1)

A shared pool to match requests and provisions of help in FCFS order.

▶ Shared pool queue length is unobservable, but servers can infer it.

A token system to mitigate free riding.

Servers interact via shared pool

The value of ϕ is critical to system performance

10/20

Token-based mechanism

In the mechanism, a server can:

Request help from others without recall at any time.

▶ Requested jobs relocate to shared pool

▶ Each request costs one token

When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall. If a server offers help:

▶ The oldest job in shared pool is served (if pool is non-empty)

▶ A token is rewarded with prob ϕ ∈ (0, 1)

A shared pool to match requests and provisions of help in FCFS order.

▶ Shared pool queue length is unobservable, but servers can infer it.

A token system to mitigate free riding.

Servers interact via shared pool

The value of ϕ is critical to system performance

10/20

Token-based mechanism

In the mechanism, a server can:

Request help from others without recall at any time.

▶ Requested jobs relocate to shared pool

▶ Each request costs one token

When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall. If a server offers help:

▶ The oldest job in shared pool is served (if pool is non-empty)

▶ A token is rewarded with prob ϕ ∈ (0, 1)

A shared pool to match requests and provisions of help in FCFS order.

▶ Shared pool queue length is unobservable, but servers can infer it.

A token system to mitigate free riding.

Servers interact via shared pool

The value of ϕ is critical to system performance

10/20

Token-based mechanism

In the mechanism, a server can:

Request help from others without recall at any time.

▶ Requested jobs relocate to shared pool

▶ Each request costs one token

When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall. If a server offers help:

▶ The oldest job in shared pool is served (if pool is non-empty)

▶ A token is rewarded with prob ϕ ∈ (0, 1)

A shared pool to match requests and provisions of help in FCFS order.

▶ Shared pool queue length is unobservable, but servers can infer it.

A token system to mitigate free riding.

Servers interact via shared pool

The value of ϕ is critical to system performance

10/20

Token-based mechanism

In the mechanism, a server can:

Request help from others without recall at any time.

▶ Requested jobs relocate to shared pool

▶ Each request costs one token

When a capacity unit arrives, either: (i) serve its job, (ii) help others, or (iii) be
idle and waste the unit without recall. If a server offers help:

▶ The oldest job in shared pool is served (if pool is non-empty)

▶ A token is rewarded with prob ϕ ∈ (0, 1)

A shared pool to match requests and provisions of help in FCFS order.

▶ Shared pool queue length is unobservable, but servers can infer it.

A token system to mitigate free riding.

Servers interact via shared pool

The value of ϕ is critical to system performance

10/20

Equilibrium concept: Fluid mean-field equilibrium

Approximation methodology similar to (Balseiro et al. 2015)

Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average =⇒
▶ Expected waiting time in shared pool is constant w ≥ 0: value determined

endogenously by equilibrium

▶ Probability that shared pool is non-empty is constant: equal to ϕ !

Fluid relaxation: allow # of tokens to be negative; only require that tokens
satisfy the flow balance constraint in expectation

After simplification: server’s best response depends only on its queue length

=⇒ Closed-form characterization (next slide)

Fluid mean-field equilibrium (FMFE):

w ∈ H(w)

conjectured waiting time
induced waiting time when all servers

follow best responses to w

11/20

Equilibrium concept: Fluid mean-field equilibrium

Approximation methodology similar to (Balseiro et al. 2015)

Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average =⇒
▶ Expected waiting time in shared pool is constant w ≥ 0: value determined

endogenously by equilibrium

▶ Probability that shared pool is non-empty is constant: equal to ϕ !

For each server:

rate of requesting help = rate of spending tokens

= rate of earning tokens = ϕ · rate of offering help

Fluid relaxation: allow # of tokens to be negative; only require that tokens
satisfy the flow balance constraint in expectation

After simplification: server’s best response depends only on its queue length

=⇒ Closed-form characterization (next slide)

Fluid mean-field equilibrium (FMFE):

w ∈ H(w)

conjectured waiting time
induced waiting time when all servers

follow best responses to w

11/20

Equilibrium concept: Fluid mean-field equilibrium

Approximation methodology similar to (Balseiro et al. 2015)

Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average =⇒
▶ Expected waiting time in shared pool is constant w ≥ 0: value determined

endogenously by equilibrium

▶ Probability that shared pool is non-empty is constant: equal to ϕ !

For each server:

rate of requesting help = rate of spending tokens

= rate of earning tokens = ϕ · rate of offering help

requesting help rate of server i
= ϕ · offering help rate of server i

offering help rate of server i

shared pool

Fluid relaxation: allow # of tokens to be negative; only require that tokens
satisfy the flow balance constraint in expectation

After simplification: server’s best response depends only on its queue length

=⇒ Closed-form characterization (next slide)

Fluid mean-field equilibrium (FMFE):

w ∈ H(w)

conjectured waiting time
induced waiting time when all servers

follow best responses to w

11/20

Equilibrium concept: Fluid mean-field equilibrium

Approximation methodology similar to (Balseiro et al. 2015)

Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average =⇒
▶ Expected waiting time in shared pool is constant w ≥ 0: value determined

endogenously by equilibrium

▶ Probability that shared pool is non-empty is constant: equal to ϕ !

Fluid relaxation: allow # of tokens to be negative; only require that tokens
satisfy the flow balance constraint in expectation

After simplification: server’s best response depends only on its queue length

=⇒ Closed-form characterization (next slide)

Fluid mean-field equilibrium (FMFE):

w ∈ H(w)

conjectured waiting time
induced waiting time when all servers

follow best responses to w

11/20

Equilibrium concept: Fluid mean-field equilibrium

Approximation methodology similar to (Balseiro et al. 2015)

Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average =⇒
▶ Expected waiting time in shared pool is constant w ≥ 0: value determined

endogenously by equilibrium

▶ Probability that shared pool is non-empty is constant: equal to ϕ !

Fluid relaxation: allow # of tokens to be negative; only require that tokens
satisfy the flow balance constraint in expectation

After simplification: server’s best response depends only on its queue length

=⇒ Closed-form characterization (next slide)

Fluid mean-field equilibrium (FMFE):

w ∈ H(w)

conjectured waiting time
induced waiting time when all servers

follow best responses to w

11/20

Equilibrium concept: Fluid mean-field equilibrium

Approximation methodology similar to (Balseiro et al. 2015)

Mean-field approximation: each server optimizes by assuming state of shared
pool is fixed at long-run average =⇒
▶ Expected waiting time in shared pool is constant w ≥ 0: value determined

endogenously by equilibrium

▶ Probability that shared pool is non-empty is constant: equal to ϕ !

Fluid relaxation: allow # of tokens to be negative; only require that tokens
satisfy the flow balance constraint in expectation

After simplification: server’s best response depends only on its queue length

=⇒ Closed-form characterization (next slide)

Fluid mean-field equilibrium (FMFE):

w ∈ H(w)

conjectured waiting time
induced waiting time when all servers

follow best responses to w

11/20

Server’s best response

Closed-form solution: threshold policy w.r.t. queue length:

Request help only when queue length exceeds a threshold k (which
depends on ϕ and w)

Offer help only when queue is empty

Proposition. Suppose ∃ w̄ < ∞ such that all servers believe that w ≤ w̄; then
w = O

(
1
N

)
.

Proof: Using a drift analysis.

requesting help rate of server i

= ϕ · offering help rate of server i

offering help rate of server i

shared pool

12/20

Server’s best response

Closed-form solution: threshold policy w.r.t. queue length:

Request help only when queue length exceeds a threshold k (which
depends on ϕ and w)

Offer help only when queue is empty

Proposition. Suppose ∃ w̄ < ∞ such that all servers believe that w ≤ w̄; then
w = O

(
1
N

)
.

Proof: Using a drift analysis.

requesting help rate of server i

= ϕ · offering help rate of server i

offering help rate of server i

shared pool

12/20

Server’s best response

Closed-form solution: threshold policy w.r.t. queue length:

Request help only when queue length exceeds a threshold k (which
depends on ϕ and w)

Offer help only when queue is empty

Proposition. Suppose ∃ w̄ < ∞ such that all servers believe that w ≤ w̄; then
w = O

(
1
N

)
.

Proof: Using a drift analysis.

requesting help rate of server i

= ϕ · offering help rate of server i

offering help rate of server i

shared pool

12/20

Best response when w < 1

(Unique) best response when w < 1:

0

k − 1

k

...
1λ

λ 1

1(1 − p)λ

pλ

1

λ

ϕ ≤ λ

offer help with prob 1

k decreases with ϕ

ϕ ≥ λ

0

λ

1

offer help with prob λ
ϕ

request help whenever
a job arrives

Proposition. For any ϕ ∈ (0, 1), if all servers play the above strategy, it forms
a FMFE when number of servers N is large. detail

13/20

Best response when w < 1

(Unique) best response when w < 1:

0

k − 1

k

...
1λ

λ 1

1(1 − p)λ

pλ

1

λ

ϕ ≤ λ

offer help with prob 1

k decreases with ϕ

ϕ ≥ λ

0

λ

1

offer help with prob λ
ϕ

request help whenever
a job arrives

Proposition. For any ϕ ∈ (0, 1), if all servers play the above strategy, it forms
a FMFE when number of servers N is large.

detail

13/20

Best response when w < 1

(Unique) best response when w < 1:

0

k − 1

k

...
1λ

λ 1

1(1 − p)λ

pλ

1

λ

ϕ ≤ λ

offer help with prob 1

k decreases with ϕ

ϕ ≥ λ

0

λ

1

offer help with prob λ
ϕ

request help whenever
a job arrives

Proposition. For any ϕ ∈ (0, 1), if all servers play the above strategy, it forms
a FMFE when number of servers N is large. detail

13/20

Optimal value of ϕ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

offering help rate

requesting help rate

expected queue length
of a server

Proposition. The expected total number of jobs in system, denoted by
QΣ(ϕ), satisfies:

1. When ϕ < λ: limN→∞ QΣ(ϕ)/N = q(ϕ) > 0

2. When ϕ ≥ λ: QΣ(ϕ) =
ϕ

1−ϕ

Main result. The optimal value is ϕ = λ. Moreover, this induces complete
resource pooling: it is each server’s best strategy to (i)
request help whenever a job arrives, (ii) offer help when queue is empty.

=⇒ System’s dynamics and performance match those under centralized control

14/20

Optimal value of ϕ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

offering help rate

requesting help rate

expected queue length
of a server

Main result. The optimal value is ϕ = λ. Moreover, this induces complete
resource pooling: it is each server’s best strategy to (i)
request help whenever a job arrives, (ii) offer help when queue is empty.

=⇒ System’s dynamics and performance match those under centralized control

14/20

FMFE as good approximation of servers’ strategics

15/20

Asymptotic analysis for large markets

Servers i ≥ 2 follow FMFE strategy; server one minimizes own cost.

Optimal value of fluid mean-field problem with w = 0: cλ+ E
[
QF

]
E[QF]: a server’s queue length when follows the FMFE strategy in the fluid problem

Lemma. If server one also follows FMFE strategy, its time-average total cost is

upper-bounded by cλ+ E
[
QF

]
+ C1(λ,ϕ)

N .

Lemma. Regardless of the strategy server one uses, its time-average total cost

is lower-bounded by cλ+ E
[
QF

]
− C2(λ,ϕ,δ)

N1−δ for any δ ∈ (0, 1).

Proof sketch:

1. A relaxation to server one’s problem: empower the server to empty the shared
pool at the end of every interaction with shared pool

⇒ Request help only when a job arrives

2. A coupling argument and a drift analysis to show:

(a) shared pool’s queue length transitions to stationary distribution quickly as N → ∞
(b) in stationary distribution, shared pool is non-empty with probability ϕ− c(λ,ϕ,δ)

N1−δ

16/20

Asymptotic analysis for large markets

Servers i ≥ 2 follow FMFE strategy; server one minimizes own cost.

Optimal value of fluid mean-field problem with w = 0: cλ+ E
[
QF

]
E[QF]: a server’s queue length when follows the FMFE strategy in the fluid problem

Lemma. If server one also follows FMFE strategy, its time-average total cost is

upper-bounded by cλ+ E
[
QF

]
+ C1(λ,ϕ)

N .

Lemma. Regardless of the strategy server one uses, its time-average total cost

is lower-bounded by cλ+ E
[
QF

]
− C2(λ,ϕ,δ)

N1−δ for any δ ∈ (0, 1).

Proof sketch:

1. A relaxation to server one’s problem: empower the server to empty the shared
pool at the end of every interaction with shared pool

⇒ Request help only when a job arrives

2. A coupling argument and a drift analysis to show:

(a) shared pool’s queue length transitions to stationary distribution quickly as N → ∞
(b) in stationary distribution, shared pool is non-empty with probability ϕ− c(λ,ϕ,δ)

N1−δ

16/20

Asymptotic analysis for large markets

Servers i ≥ 2 follow FMFE strategy; server one minimizes own cost.

Optimal value of fluid mean-field problem with w = 0: cλ+ E
[
QF

]
E[QF]: a server’s queue length when follows the FMFE strategy in the fluid problem

Lemma. If server one also follows FMFE strategy, its time-average total cost is

upper-bounded by cλ+ E
[
QF

]
+ C1(λ,ϕ)

N .

Lemma. Regardless of the strategy server one uses, its time-average total cost

is lower-bounded by cλ+ E
[
QF

]
− C2(λ,ϕ,δ)

N1−δ for any δ ∈ (0, 1).

Proof sketch:

1. A relaxation to server one’s problem: empower the server to empty the shared
pool at the end of every interaction with shared pool

⇒ Request help only when a job arrives

2. A coupling argument and a drift analysis to show:

(a) shared pool’s queue length transitions to stationary distribution quickly as N → ∞
(b) in stationary distribution, shared pool is non-empty with probability ϕ− c(λ,ϕ,δ)

N1−δ

16/20

Asymptotic analysis for large markets

Servers i ≥ 2 follow FMFE strategy; server one minimizes own cost.

Optimal value of fluid mean-field problem with w = 0: cλ+ E
[
QF

]
E[QF]: a server’s queue length when follows the FMFE strategy in the fluid problem

Lemma. If server one also follows FMFE strategy, its time-average total cost is

upper-bounded by cλ+ E
[
QF

]
+ C1(λ,ϕ)

N .

Lemma. Regardless of the strategy server one uses, its time-average total cost

is lower-bounded by cλ+ E
[
QF

]
− C2(λ,ϕ,δ)

N1−δ for any δ ∈ (0, 1).

Proof sketch:

1. A relaxation to server one’s problem: empower the server to empty the shared
pool at the end of every interaction with shared pool

⇒ Request help only when a job arrives

2. A coupling argument and a drift analysis to show:

(a) shared pool’s queue length transitions to stationary distribution quickly as N → ∞
(b) in stationary distribution, shared pool is non-empty with probability ϕ− c(λ,ϕ,δ)

N1−δ

16/20

Asymptotic analysis for large markets

Servers i ≥ 2 follow FMFE strategy; server one minimizes own cost.

Optimal value of fluid mean-field problem with w = 0: cλ+ E
[
QF

]
E[QF]: a server’s queue length when follows the FMFE strategy in the fluid problem

Lemma. If server one also follows FMFE strategy, its time-average total cost is

upper-bounded by cλ+ E
[
QF

]
+ C1(λ,ϕ)

N .

Lemma. Regardless of the strategy server one uses, its time-average total cost

is lower-bounded by cλ+ E
[
QF

]
− C2(λ,ϕ,δ)

N1−δ for any δ ∈ (0, 1).

Proof sketch:

1. A relaxation to server one’s problem: empower the server to empty the shared
pool at the end of every interaction with shared pool

⇒ Request help only when a job arrives

2. A coupling argument and a drift analysis to show:

(a) shared pool’s queue length transitions to stationary distribution quickly as N → ∞
(b) in stationary distribution, shared pool is non-empty with probability ϕ− c(λ,ϕ,δ)

N1−δ

16/20

Asymptotic analysis for large markets

Servers i ≥ 2 follow FMFE strategy; server one minimizes own cost.

Optimal value of fluid mean-field problem with w = 0: cλ+ E
[
QF

]
E[QF]: a server’s queue length when follows the FMFE strategy in the fluid problem

Lemma. If server one also follows FMFE strategy, its time-average total cost is

upper-bounded by cλ+ E
[
QF

]
+ C1(λ,ϕ)

N .

Lemma. Regardless of the strategy server one uses, its time-average total cost

is lower-bounded by cλ+ E
[
QF

]
− C2(λ,ϕ,δ)

N1−δ for any δ ∈ (0, 1).

Proof sketch:

1. A relaxation to server one’s problem: empower the server to empty the shared
pool at the end of every interaction with shared pool

⇒ Request help only when a job arrives

2. A coupling argument and a drift analysis to show:

(a) shared pool’s queue length transitions to stationary distribution quickly as N → ∞
(b) in stationary distribution, shared pool is non-empty with probability ϕ− c(λ,ϕ,δ)

N1−δ

16/20

Analysis for small market

Mechanism uses ϕ = λ.

Consider the fluid setup: tokens can go negative but expected rates of earning
and spending tokens are equal.

Servers i ≥ 2 adopt complete resource pooling; server one is strategic and
minimizes own cost.

Grant server one additional information edge:

Complete information about the shared pool’s queue length (denoted by q0)

⇒ Optimal strategy depends only on two states: q1 (own queue length) and q0

=⇒ Tractable optimization problem!

17/20

Analysis for small market

Mechanism uses ϕ = λ.

Consider the fluid setup: tokens can go negative but expected rates of earning
and spending tokens are equal.

Servers i ≥ 2 adopt complete resource pooling; server one is strategic and
minimizes own cost.

Grant server one additional information edge:

Complete information about the shared pool’s queue length (denoted by q0)

⇒ Optimal strategy depends only on two states: q1 (own queue length) and q0

=⇒ Tractable optimization problem!

17/20

Analysis for small market

Mechanism uses ϕ = λ.

Consider the fluid setup: tokens can go negative but expected rates of earning
and spending tokens are equal.

Servers i ≥ 2 adopt complete resource pooling; server one is strategic and
minimizes own cost.

Grant server one additional information edge:

Complete information about the shared pool’s queue length (denoted by q0)

⇒ Optimal strategy depends only on two states: q1 (own queue length) and q0

=⇒ Tractable optimization problem!

17/20

Numerical results
(a) job processing cost c = 1; (b) job arrival rate λ ∈ {0.7, 0.8, 0.9}

Sub-optimality gap = Cost of complete resource pooling−Cost of optimal strategy
Cost of optimal strategy

4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

λ = 0.9

λ = 0.8

λ = 0.7

The value of playing strategically is small even with few servers (and when
server one can perfectly monitor the shared pool)

18/20

Extension: heterogeneous servers

For each server i: job arrival rate λi and processing rate µi; let ρi =
λi
µi

Assume 0 < ρ ≤ ρi ≤ ρ̄ < 1 and 0 < λ ≤ λi ≤ λ̄ for all servers

Consider token-based mechanism with ϕ = ρ̄

Proposition It is FMFE and approximate equilibrium for each server to (i) request
help for all incoming jobs, and (ii) offer help with probability ρi/ρ̄ when a capacity
unit arrives, when number of servers is large.∑

i λi

∑
i µi

vs.

∑
i λi

∑
i λi/ρ̄

Number of jobs in centralized setting: between
ρ

1−ρ
and ρ̄

1−ρ̄

Number of jobs within our mechanism: ρ̄
1−ρ̄

Job processing costs are allocated ∝ µi versus ∝ λi

⇒ Costs allocated fairly in our mechanism!

19/20

Extension: heterogeneous servers

For each server i: job arrival rate λi and processing rate µi; let ρi =
λi
µi

Assume 0 < ρ ≤ ρi ≤ ρ̄ < 1 and 0 < λ ≤ λi ≤ λ̄ for all servers

Consider token-based mechanism with ϕ = ρ̄

Proposition It is FMFE and approximate equilibrium for each server to (i) request
help for all incoming jobs, and (ii) offer help with probability ρi/ρ̄ when a capacity
unit arrives, when number of servers is large.∑

i λi

∑
i µi

vs.

∑
i λi

∑
i λi/ρ̄

Number of jobs in centralized setting: between
ρ

1−ρ
and ρ̄

1−ρ̄

Number of jobs within our mechanism: ρ̄
1−ρ̄

Job processing costs are allocated ∝ µi versus ∝ λi

⇒ Costs allocated fairly in our mechanism!

19/20

Extension: heterogeneous servers

For each server i: job arrival rate λi and processing rate µi; let ρi =
λi
µi

Assume 0 < ρ ≤ ρi ≤ ρ̄ < 1 and 0 < λ ≤ λi ≤ λ̄ for all servers

Consider token-based mechanism with ϕ = ρ̄

Proposition It is FMFE and approximate equilibrium for each server to (i) request
help for all incoming jobs, and (ii) offer help with probability ρi/ρ̄ when a capacity
unit arrives, when number of servers is large.

∑
i λi

∑
i µi

vs.

∑
i λi

∑
i λi/ρ̄

Number of jobs in centralized setting: between
ρ

1−ρ
and ρ̄

1−ρ̄

Number of jobs within our mechanism: ρ̄
1−ρ̄

Job processing costs are allocated ∝ µi versus ∝ λi

⇒ Costs allocated fairly in our mechanism!

19/20

Extension: heterogeneous servers

For each server i: job arrival rate λi and processing rate µi; let ρi =
λi
µi

Assume 0 < ρ ≤ ρi ≤ ρ̄ < 1 and 0 < λ ≤ λi ≤ λ̄ for all servers

Consider token-based mechanism with ϕ = ρ̄

Proposition It is FMFE and approximate equilibrium for each server to (i) request
help for all incoming jobs, and (ii) offer help with probability ρi/ρ̄ when a capacity
unit arrives, when number of servers is large.∑

i λi

∑
i µi

vs.

∑
i λi

∑
i λi/ρ̄

Number of jobs in centralized setting: between
ρ

1−ρ
and ρ̄

1−ρ̄

Number of jobs within our mechanism: ρ̄
1−ρ̄

Job processing costs are allocated ∝ µi versus ∝ λi

⇒ Costs allocated fairly in our mechanism!

19/20

Extension: heterogeneous servers

For each server i: job arrival rate λi and processing rate µi; let ρi =
λi
µi

Assume 0 < ρ ≤ ρi ≤ ρ̄ < 1 and 0 < λ ≤ λi ≤ λ̄ for all servers

Consider token-based mechanism with ϕ = ρ̄

Proposition It is FMFE and approximate equilibrium for each server to (i) request
help for all incoming jobs, and (ii) offer help with probability ρi/ρ̄ when a capacity
unit arrives, when number of servers is large.∑

i λi

∑
i µi

vs.

∑
i λi

∑
i λi/ρ̄

Number of jobs in centralized setting: between
ρ

1−ρ
and ρ̄

1−ρ̄

Number of jobs within our mechanism: ρ̄
1−ρ̄

Job processing costs are allocated ∝ µi versus ∝ λi

⇒ Costs allocated fairly in our mechanism!

19/20

Extension: heterogeneous servers

For each server i: job arrival rate λi and processing rate µi; let ρi =
λi
µi

Assume 0 < ρ ≤ ρi ≤ ρ̄ < 1 and 0 < λ ≤ λi ≤ λ̄ for all servers

Consider token-based mechanism with ϕ = ρ̄

Proposition It is FMFE and approximate equilibrium for each server to (i) request
help for all incoming jobs, and (ii) offer help with probability ρi/ρ̄ when a capacity
unit arrives, when number of servers is large.∑

i λi

∑
i µi

vs.

∑
i λi

∑
i λi/ρ̄

Number of jobs in centralized setting: between
ρ

1−ρ
and ρ̄

1−ρ̄

Number of jobs within our mechanism: ρ̄
1−ρ̄

Job processing costs are allocated ∝ µi versus ∝ λi

⇒ Costs allocated fairly in our mechanism!
19/20

Summary

We study incentivizing resource pooling in a decentralized setting, where
servers have limited information about others

Operational takeaway: A simple token-based mechanism incentivizes
complete resource pooling when number of servers is large

▶ Analysis based on fluid mean-field equilibrium

▶ Numerical results show that benefit from unilateral deviation is small even
with only a few servers

Ongoing work. Applying the mechanism and analytical framework to
other decentralized systems, e.g., multi-hospital kidney exchange.

Reference: C. Chen, Y. Chen, and P. Qian. 2023. Incentivizing Resource
Pooling. Under review.

Working paper available at https://papers.ssrn.com/abstract=4586771

20/20

Summary

We study incentivizing resource pooling in a decentralized setting, where
servers have limited information about others

Operational takeaway: A simple token-based mechanism incentivizes
complete resource pooling when number of servers is large

▶ Analysis based on fluid mean-field equilibrium

▶ Numerical results show that benefit from unilateral deviation is small even
with only a few servers

Ongoing work. Applying the mechanism and analytical framework to
other decentralized systems, e.g., multi-hospital kidney exchange.

Reference: C. Chen, Y. Chen, and P. Qian. 2023. Incentivizing Resource
Pooling. Under review.

Working paper available at https://papers.ssrn.com/abstract=4586771

20/20

Summary

We study incentivizing resource pooling in a decentralized setting, where
servers have limited information about others

Operational takeaway: A simple token-based mechanism incentivizes
complete resource pooling when number of servers is large

▶ Analysis based on fluid mean-field equilibrium

▶ Numerical results show that benefit from unilateral deviation is small even
with only a few servers

Ongoing work. Applying the mechanism and analytical framework to
other decentralized systems, e.g., multi-hospital kidney exchange.

Reference: C. Chen, Y. Chen, and P. Qian. 2023. Incentivizing Resource
Pooling. Under review.

Working paper available at https://papers.ssrn.com/abstract=4586771

20/20

Appendix

Minimum number of servers to sustain FMFE

FMFE necessitates w ≤ 1.

Minimum # servers can be specified analytically or numerically.

Example: suppose ϕ = λ

0

λ

1

offer help with prob 1

request help whenever
a job arrives▶ Shared pool is an M/M/1 queue

⇒ w = λ
1−λ

· 1
Nλ

= 1
(1−λ)N

▶ w ≤ 1 ⇒ N ≥
⌈

1
1−λ

⌉

back

Minimum number of servers to sustain FMFE

FMFE necessitates w ≤ 1.

Minimum # servers can be specified analytically or numerically.

Example: suppose ϕ = λ

0

λ

1

offer help with prob 1

request help whenever
a job arrives

▶ Shared pool is an M/M/1 queue

⇒ w = λ
1−λ

· 1
Nλ

= 1
(1−λ)N

▶ w ≤ 1 ⇒ N ≥
⌈

1
1−λ

⌉

back

Minimum number of servers to sustain FMFE

FMFE necessitates w ≤ 1.

Minimum # servers can be specified analytically or numerically.

Example: suppose ϕ = λ

0

λ

1

offer help with prob 1

request help whenever
a job arrives▶ Shared pool is an M/M/1 queue

⇒ w = λ
1−λ

· 1
Nλ

= 1
(1−λ)N

▶ w ≤ 1 ⇒ N ≥
⌈

1
1−λ

⌉

back

Minimum number of servers to sustain FMFE

FMFE necessitates w ≤ 1.

Minimum # servers can be specified analytically or numerically.

Example: suppose ϕ = λ

0

λ

1

offer help with prob 1

request help whenever
a job arrives▶ Shared pool is an M/M/1 queue

⇒ w = λ
1−λ

· 1
Nλ

= 1
(1−λ)N

▶ w ≤ 1 ⇒ N ≥
⌈

1
1−λ

⌉

back

