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Randomized experiments

Experimental design: the science of designing randomized tests (e.g., A/B
testing), a.k.a. experiments, to measure the effectiveness of an intervention.

High-level goal: estimate the total market effect, i.e., the difference in total
potential outcomes of the users if the intervention is introduced to the
entire market.
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Network effects and interference

Social network
Eckles et al. (2016)

Ride-sharing
Chamandy (2016)

Experiments in online platforms/networks often suffer from interference: one
user’s assignment to the treatment or control affects another user’s outcome.
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Cluster-based experimental design

Social network
Eckles et al. (2016)

Ride-sharing
Chamandy (2016)

Experiments in online platforms/networks often suffer from interference: one
user’s assignment to the treatment or control affects another user’s outcome.

Common practice: (i) group users who likely have substantial impact on each
others’ outcomes into clusters, (ii) assign all users in a cluster to the same
variant.

=⇒ often leads to a small bias (if any)
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Cluster-based experimental design

Social network
Eckles et al. (2016)

Ride-sharing
Chamandy (2016)

Experiments in online platforms/networks often suffer from interference: one
user’s assignment to the treatment or control affects another user’s outcome.

Common practice: (i) group users who likely have substantial impact on each
others’ outcomes into clusters, (ii) assign all users in a cluster to the same
variant.

=⇒ often leads to a small bias (if any)

Research question: obtain the “best” (correlated) randomized assignment to
minimize variance.
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Problem formulation

A platform conducts binary experiment over n disjoint (and heterogeneous) clusters:

Each cluster i receives a treatment =“1” or control =“0” variant

▶ Zi = 1 or 0: indicator of assignment

A cluster i has a treatment (control) outcome yi1 (yi0) if it receives the
treatment (control) assignment

Objective: estimate the total market effect τ ≜
∑

i∈[n] yi1 −
∑

i∈[n] yi0

Use the unbiased Horvitz-Thompson estimator:

τ̂ ≜
∑
i∈[n]

yi1
Zi

P
[
Zi = 1

] − ∑
i∈[n]

yi0
1− Zi

P
[
Zi = 0

]

Goal: design joint distribution (or correlation) of (Zi)i∈[n] to minimize variance
of the estimation
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Problem formulation

Problem: minimize variance Var
[
τ̂
]
against the worst-case potential outcomes

V OPT = min
P∈Pq

max
yi0∈[0,wi0],

yi1∈[0,wi1], ∀ i∈[n]

Var
[
τ̂
]
.

Pq ≜ set of joint assignment distributions with marginal prob q ∈ (0, 1)

Potential outcomes: non-negative and bounded

▶ Upper bounds wi1, wi0 can vary cross clusters and treatment/control variants

Joint assignment dists: ∀ i ∈ [n]: P[Zi = 1] = q ∈ (0, 1)
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Optimal correlation design among clusters

Lemma With any cluster-based randomized experiment, the worst-case potential
outcome is such that for any cluster i ∈ [n], either yi1 = yi0 = 0, or yi1 = wi1 and
yi0 = wi0. The variance of the HT estimator is

Var
[
τ̂
]
= yTΣy,

where yi =
√

q(1− q) ·
(

yi1
q

+ yi0
1−q

)
, and Σ is the correlation matrix of the

assignments (Zi)i∈[n].

The optimization problem becomes

V OPT = min
P∈Pq

max
yi∈[0,wi], ∀ i∈[n]

yTΣ
(
P
)
y,

with wi ≜
√

q(1− q) ·
(

wi1
q

+ wi0
1−q

)
.

correlation matrix
under joint distribution P
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Optimal correlation design among clusters

The optimization problem:

V OPT = min
P∈Pq

max
y∈×i∈[n]{0,wi}

yTΣ
(
P
)
y

Difficult to solve: number of decision variables/comstraints exponential in
number of clusters

Difficult to interpret and implement: correlation structure can be complicated

For the Facebook example (cluster sizes wi: 1190, 747, 741, 537, 315, 203, 59),
correlation matrix of the optimal experiment with q = 1

2
is:

Σ
∗
=



1 −0.314 −0.311 −0.226 −0.132 −0.085 −0.087
−0.314 1 −0.268 0 0 0 −0.242
−0.311 −0.268 1 −0.402 −0.019 0 0.100
−0.226 0 −0.402 1 0 0 0
−0.132 0 −0.019 0 1 0 0.237
−0.085 0 0 0 0 1 0
−0.087 −0.242 0.100 0 0.237 0 1



decreasing sizes

decreasing sizes

Randomize over 36 possible assignment vectors with different probabilities

It even deliberately introduces positive correlation between pairs
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Warm-up example

When clusters have equal “sizes” wi (WLOG, wi = 1 for all i ∈ [n]):

Lemma The optimal experiment randomly assigns a fraction q of the clusters to
treatment. The correlation between assignments of any two clusters is σ ≈ − 1

n−1
.

The worst-case variance is V OPT ≈ n
4
.



1

1

1

. . .

1



vs.



1

1

1

. . .

1



correlation matrix of
the optimal experiment

correlation matrix of
independent assignments

−1
n−1

−1
n−1

∅

∅

Price of independence: independently assigning each cluster to treatment has
worst-case variance n =⇒ multiplicative gap = 4.
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Independent block randomization (IBR)

We consider a family of independent block randomization experiments:

1. Sort clusters in (decreasing) sizes wi;

2. Partition clusters into blocks so that each block contains clusters of similar sizes;

3. Randomly treat a fraction q of the clusters in each block, and do so
independently across blocks.

w1 w2 w3 w4 w5 w6 w7 w8 · · · · · · · · · wn−1 wn



1 ∗ ∗ ∗ ∗

∗ 1 ∗ ∗ ∗

∗ ∗ 1 ∗ ∗

∗ ∗ ∗
. . . ∗

∗ ∗ ∗ ∗ 1


vs.

correlation matrix of
the optimal experiment

correlation matrix of
an IBR experiment

Simple characterization of the worst-case outcome for a block

The worst-case variance is additive over blocks

=⇒ Simple dynamic program to compute the optimal partition!
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Performance Trade-off of IBR vs. Optimal

Correlation matrix of an IBR experiment

Gain: a larger negative correlation within a block

Losses come from two sources:

– independent assignments across blocks

– ignoring cluster size difference within a block

Both losses can be small
with a careful design of

cluster partitions
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Performance analysis

Theorem Let V DP denote the worst-case variance of the optimal IBR experiment.

1. Approximation ratio: for any problem instance,

V DP

V OPT
≤ C(q).

(C( 1
2
) = 7

3
≈ 2.33, C( 1

3
) = 2, C( 1

4
) = 7

3
≈ 2.33 ...)

2. Asymptotic optimality:

as n → ∞ and if w2
1 = o

(∑
i∈[n] w

2
i

)
,

V DP − V OPT

V OPT
= O

(√
w2

1∑
i∈[n] w

2
i

)

→ 0.

the largest
cluster size V OPT = Θ

(∑
i∈[n] w

2
i

)

Performance is substantially better in numerical study.

Stronger results for more specific settings.
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Back to Facebook example

Partition the network using the classic Louvain algorithm, and merge two
clusters if one contaminates more than 10% of the second one.

n = 7 clusters of different sizes; “contaminated” users ∼ 6%.

Consider marginal assignment probability q = 1
2
.

Source: Stanford SNAP Datasets
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Facebook example

Reminder: The optimal cluster-based assignment is difficult to solve and has a
complicated correlation structure:

▶ Randomizes over 36 possible assignment vectors with different probabilities.

▶ Even deliberately introduces positive correlation between small clusters.

Σ
∗
c =



1 −0.314 −0.311 −0.226 −0.132 −0.085 −0.087
−0.314 1 −0.268 0 0 0 −0.242
−0.311 −0.268 1 −0.402 −0.019 0 0.100
−0.226 0 −0.402 1 0 0 0
−0.132 0 −0.019 0 1 0 0.237
−0.085 0 0 0 0 1 0
−0.087 −0.242 0.100 0 0.237 0 1



The optimal IBR experiment has a simple structure:

Σ
DP

=



1 −1/3 −1/3 −1/3 0 0 0
−1/3 1 −1/3 −1/3 0 0 0
−1/3 −1/3 1 −1/3 0 0 0
−1/3 −1/3 −1/3 1 0 0 0

0 0 0 0 1 −1/3 −1/3
0 0 0 0 −1/3 1 −1/3
0 0 0 0 −1/3 −1/3 1


The optimal IBR experiment: (V DP − V OPT)/V OPT = 7%.

Randomly treating half of the clusters: (V half − V OPT)/V OPT = 31.3%.

Pair matching experiment: (V pair − V OPT)/V OPT = 46.0%.

Independent cluster-based assignment: (V ind − V OPT)/V OPT = 108.5%.
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Takeaways and future directions

We study robust experimental design for cluster-based randomization.

We develop simple IBR experiments that (i) attain good approximation ratio
and (ii) are asymptotically optimal with many clusters under mild conditions.

Operational takeaway: collecting similar clusters together and randomly
treating a fraction q in each block is near-optimal.

Future work:

▶ Optimal bias-variance trade-off

▶ Careful empirical study based on real data

Reference: O. Candogan, C. Chen, and R. Niazadeh, “Correlated Cluster-Based
Randomized Experiments: Robust Variance Minimization.” Management Science
(forthcoming).

Working paper available at https://papers.ssrn.com/abstract=3852100
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Related Literature—CS/ECON/OR/STAT

Experimental design in networks:

General networks: [Eckles et al., 2016],[Aronow et al., 2017],[Ugander and Yin, 2020]

Bipartite networks: [Zigler and Papadogeorgou, 2018], [Pouget-Abadie et al., 2019],
[Doudchenko et al., 2020],[Harshaw et al., 2021]

Experimental design in online platforms:

Analysis of bias: [Johari et al., 2020]

Analysis of marketplace equilibrium: [Wager and Xu, 2021]

Switchback experiments: [Bojinov et al., 2020],[Glynn et al., 2020]

Relevant empirical work: [Ostrovsky and Schwarz, 2011],[Blake and Coey, 2014],[Zhang
et al., 2020],[Holtz et al., 2020],[Holtz and Aral, 2020]

Models of potential outcomes:

Covariate model: [Bertsimas et al., 2015],[Bertsimas et al. 2019],[Kallus, 2018],[Bhat
et al., 2020],[Harshaw et al., 2019], etc.

Worst-case potential outcomes: [Bojinov et al., 2020]
(we follow the same framework)

And many more!


