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Randomized experiments

m Experimental design: the science of designing randomized tests (e.g., A/B
testing), a.k.a. experiments, to measure the effectiveness of an intervention.

21%  CONTROL

34% TREATMENT

m High-level goal: estimate the total market effect, i.e., the difference in total
potential outcomes of the users if the intervention is introduced to the
entire market.
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Network effects and interference

Social network Ride-sharing
Eckles et al. (2016) Chamandy (2016)

m Experiments in online platforms/networks often suffer from interference: one
user's assignment to the treatment or control affects another user’'s outcome.
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Cluster-based experimental design

Social network Ride-sharing
Eckles et al. (2016) Chamandy (2016)

m Experiments in online platforms/networks often suffer from interference: one
user's assignment to the treatment or control affects another user’'s outcome.

m Common practice: (i) group users who likely have substantial impact on each
others’ outcomes into clusters, (ii) assign all users in a cluster to the same

variant.
= often leads to a small bias (if any)
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Cluster-based

Social network
Eckles et al. (2016)

m Experiments in online platforms/networks often suffer from interference: one
user's assignment to the treatment or control affects another user’'s outcome.

m Common practice: (i) group users who likely have substantial impact on each
others’ outcomes into clusters, (ii) assign all users in a cluster to the same

variant.

experimental design

Denver

Ride-sharing
Chamandy (2016)

= often leads to a small bias (if any)

m Research question: obtain the “best” (correlated) randomized assignment to

minimize variance.
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Problem formulation

A platform conducts binary experiment over n disjoint (and heterogeneous) clusters:

m Each cluster i receives a treatment ="1" or control ="0" variant

» Z; =1or0: indicator of assignment
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Problem formulation

A platform conducts binary experiment over n disjoint (and heterogeneous) clusters:

m Each cluster i receives a treatment ="1" or control ="0" variant

» Z; =1or0: indicator of assignment

m A cluster i has a treatment (control) outcome yi1 (yio) if it receives the
treatment (control) assignment

m Objective: estimate the total market effect 7 £ Zie[n] Yi1 — Eie[n] Yio

m Use the unbiased Horvitz-Thompson estimator:

Tnyu Zym Z—O}

i€[n] i€[n]

m Goal: design joint distribution (or correlation) of (Z;);c[n) to minimize variance
of the estimation
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Problem formulation

Problem: minimize variance Var [ﬂ against the worst-case potential outcomes

VOPT = min max Var [f‘]
PeP, Yi0€[0,ws0],
yi1 €[0,w;1], Vi€[n]

P, £ set of joint assignment distributions with marginal prob ¢ € (0, 1)
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Problem formulation

Problem: minimize variance Var [ﬂ against the worst-case potential outcomes

VOPT = min max Var [f‘]
PePy yi0€[0,wio],
yi1€[0,wi1], Vie[n]

P, £ set of joint assiggment distributions with Myarginal prob ¢ € (0, 1)

m Potential outconmes: non-negative and bounded

» Upper bounds w;1, wio can vary cross clusters and treatment/control variants

m Joint assignment dists: Vi € [n]: P[Z; = 1] =q € (0,1)
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Optimal correlation design among clusters

Lemma With any cluster-based randomized experiment, the worst-case potential
outcome is such that for any cluster i € [n], either y;1 = yi0 = 0, or y;1 = wi1 and
Yi0 = wio. The variance of the HT estimator is

Var [?] =y Ty,

where y; = \/q(1 —q) - (y“ + %}q) and X is the correlation matrix of the

q
assignments (Z;)ie[n)-
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Optimal correlation design among clusters

Lemma With any cluster-based randomized experiment, the worst-case potential
outcome is such that for any cluster i € [n], either y;1 = yio = 0, or y;1 = wi1 and

Yyi0 = wio. Ihe variance of the HT estimator is

Var [?] =y Ty,

where y; = \/q(1 —q) - (y“ + %) and X is the correlation matrix of the

q
assignments (Z;)ie[n)-
correlation matrix
under joint distribution P

The optimization problem becomes /\j

VOrT = min ma; ™S (P)y,
PE%’qin[O’Wi]aXViG[n]y ( )y

W'thwlém(%-‘r%)
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Optimal correlation design among clusters
The optimization problem:

VOFT = min max y 2 (P)y
PEPq y€X; ) (005} (P)

m Difficult to solve: number of decision variables/comstraints exponential in
number of clusters

m Difficult to interpret and implement: correlation structure can be complicated
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Optimal correlation design among clusters
The optimization problem:

VOFT = min max y 2 (P)y
PEPq y€X; ) (005} (P)

m Difficult to solve: number of decision variables/comstraints exponential in
number of clusters

m Difficult to interpret and implement: correlation structure can be complicated

For the Facebook example (cluster sizes w;: 1190, 747,741,537, 315, 203, 59),
correlation matrix of the optimal experiment with ¢ = % is:

decreasing sizes

1 —0.314 —0.311 —0.226 —0.132 —0.085 —0.087
—0.314 1 —0.268 0 0 0 —0.242
—0.311 —0.268 1 —0.402 —0.019 0 0.100

¥ = [-0.226 0 —0.402 1 0 0 0
—0.132 0 —0.019 0 1 0 0.237
—0.085 0 0 0 0 1 0
—0.087 —0.242  0.100 0 0.237 0 1

decreasing sizes
m Randomize over 36 possible assignment vectors with different probabilities

m It even deliberately introduces positive correlation between pairs
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Warm-up example

When clusters have equal “sizes” w; (WLOG, w; =1 for all i € [n]):
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~ -
~

n—1"°
The worst-case variance is VOFT ~ 2.
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Warm-up example

When clusters have equal “sizes” w; (WLOG, w; =1 for all i € [n]):

Lemma The optimal experiment randomly assigns a fraction q of the clusters to

treatment. The correlation between assignments of any two clusters is o =~ 7ﬁ.
The worst-case variance is V" ~ %
1 1 1
1 ] 1 %)
1 vs. 1

correlation matrix of correlation matrix of
the optimal experiment independent assignments

Price of independence: independently assigning each cluster to treatment has
worst-case variance n =—> multiplicative gap = 4.
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Independent block randomization (IBR)

We consider a family of independent block randomization experiments:
1. Sort clusters in (decreasing) sizes w;;
2. Partition clusters into blocks so that each block contains clusters of similar sizes;

3. Randomly treat a fraction g of the clusters in each block, and do so
independently across blocks.

w] w2 w3 w4 ws  we w7 w8 ces Wn—1 Wn,
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Independent block randomization (IBR)

We consider a family of independent block randomization experiments:
1. Sort clusters in (decreasing) sizes w;;
2. Partition clusters into blocks so that each block contains clusters of similar sizes;

3. Randomly treat a fraction g of the clusters in each block, and do so
independently across blocks.

1 * x * * 1

/***

correlation matrix of
the optimal experiment

.01

S
%

correlation matrix of
an IBR experiment

m Simple characterization of the worst-case outcome for a block

m The worst-case variance is additive over blocks

= Simple dynamic program to compute the optimal partition!
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Performance Trade-off of IBR vs. Optimal

w2 w2 > w3 o e > Wn

Correlation matrix of an IBR experiment

m Gain: a larger negative correlation within a block

m Losses come from two sources:

— independent assignments across blocks
— ignoring cluster size difference within a block
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Performance Trade-off of IBR vs. Optimal

Correlation matrix of an IBR experiment

Both losses can be small

with a careful design of
. cluster partitions

m Losses come from two sources:

— independent assignments across blocks _J

— ignoring cluster size difference within a block

m Gain: a larger negative correlation within a block
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Performance analysis

Theorem Let VP denote the worst-case variance of the optimal IBR experiment.

1. Approximation ratio: for any problem instance,

VDP
yorT < C(q).

(C(3)=§~233C(3)=2C(}) =§~233..)

2. Asymptotic optimality:

}PP _ J/OPT 0 w?
VorT Z’LE[n] wl2
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Performance analysis

Theorem Let VP denote the worst-case variance of the optimal IBR experiment.

1. Approximation ratio: for any problem instance,

VDP
yorT < C(g)-

(C(3)=§~233C(3)=2C(}) =§~233..)

2. Asymptotic optimality: as n — oo and if w? = o( Zie[n] wf)

the largest (/ \) Yy OPT _ @(Z ] w2)

cluster size ie[n] Wi

VDvaOPT ’LU2
— —O< S w? 1w_2> — 0.

i€[n] i

m Performance is substantially better in numerical study.

m Stronger results for more specific settings.
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Back to Facebook example

m Partition the network using the classic Louvain algorithm, and merge two
clusters if one contaminates more than 10% of the second one.

m n = 7 clusters of different sizes; “contaminated” users ~ 6%.

m Consider marginal assignment probability ¢ = %

Source: Stanford SNAP Datasets
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m Reminder: The optimal cluster-based assignment is difficult to solve and has a

Facebook example

complicated correlation structure:

» Randomizes over 36 possible assignment vectors with different probabilities.

> Even deliberately introduces positive correlation between small clusters.

—0.314
1
—0.268

—0.242

—0.311

0.100

—0.226

—0.132
0
—0.019
0
1
0
0.237

—0.085

O OO0 O
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Facebook example

m Reminder: The optimal cluster-based assignment is difficult to solve and has a
complicated correlation structure:

» Randomizes over 36 possible assignment vectors with different probabilities.

> Even deliberately introduces positive correlation between small clusters.

m The optimal IBR experiment has a simple structure:

L1 —1/3 =1/3 =1/3, 0 0 0

—1/3 1 —1/3 —-1/31 0 0 0

—-1/3 —1/3 1 -1/3, 0 0 0
SPP = -1/8  -1/3. —1/3_ 1 0 ___0 __0_
0 0 1 21737 13
0 0 0 0 —1/3 1 —1/3,
0 0 0 0 =1/3 -1/3 1 |
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Facebook example

Reminder: The optimal cluster-based assignment is difficult to solve and has a
complicated correlation structure:

» Randomizes over 36 possible assignment vectors with different probabilities.
> Even deliberately introduces positive correlation between small clusters.

The optimal IBR experiment has a simple structure:

L1 —1/3 =1/3 =1/3, 0 0 0

—1/3 1 -1/3 —1/31 0 0 0

—-1/3 —1/3 1 -1/3, 0 0 0
PP = \-1y8 o130 <31 _0____0_ __0_
0 0 0o~ 1 Zi/37 " Ziya
0 0 0 0 —1/3 —1/3,
0 0 0 0 =1/3 -1/3 1 |

The optimal IBR experiment: (VPF — VOFT)/VOFT = 7%,
Randomly treating half of the clusters: (Vhelf — }OPT) /)y OPT — 31 397
Pair matching experiment: (VP — VVOFT) /Y7OPT — 46.0%.

Independent cluster-based assignment: (V7 — V/OFT) /Y OFT — 108 5%.
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Takeaways and future directions

m We study robust experimental design for cluster-based randomization.

m We develop simple IBR experiments that (i) attain good approximation ratio

and (ii) are asymptotically optimal with many clusters under mild conditions.

m Operational takeaway: collecting similar clusters together and randomly
treating a fraction ¢ in each block is near-optimal.

m Future work:
» Optimal bias-variance trade-off

» Careful empirical study based on real data

Reference: O. Candogan, C. Chen, and R. Niazadeh, “Correlated Cluster-Based
Randomized Experiments: Robust Variance Minimization.” Management Science
(forthcoming).

Working paper available at https://papers.ssrn.com/abstract=3852100
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Appendix



Related Literature—CS/ECON/OR/STAT

Experimental design in networks:
m General networks: [Eckles et al., 2016],[Aronow et al., 2017],[Ugander and Yin, 2020]
m Bipartite networks: [Zigler and Papadogeorgou, 2018], [Pouget-Abadie et al., 2019],
[Doudchenko et al., 2020],[Harshaw et al., 2021]
Experimental design in online platforms:
m Analysis of bias: [Johari et al., 2020]
m Analysis of marketplace equilibrium: [Wager and Xu, 2021]
m Switchback experiments: [Bojinov et al., 2020],[Glynn et al., 2020]
m Relevant empirical work: [Ostrovsky and Schwarz, 2011],[Blake and Coey, 2014],[Zhang
et al., 2020],[Holtz et al., 2020],[Holtz and Aral, 2020]
Models of potential outcomes:

m Covariate model: [Bertsimas et al., 2015],[Bertsimas et al. 2019],[Kallus, 2018],[Bhat
et al., 2020],[Harshaw et al., 2019], etc.

m Worst-case potential outcomes: [Bojinov et al., 2020]
(we follow the same framework)

And many more!



