Correlated Cluster-Based Randomized Experiments: Robust Variance Minimization

Chen Chen

ACM EC 2023 July 9, 2023

Joint work with: Ozan Candogan and Rad Niazadeh (Chicago Booth)

Randomized experiments

Experimental design: the science of designing randomized tests (e.g., A/B testing), a.k.a. experiments, to measure the effectiveness of an intervention.

High-level goal: estimate the total market effect, i.e., the difference in total potential outcomes of the users if the intervention is introduced to the entire market.

Network effects and interference

Social network Eckles et al. (2016)

 Experiments in online platforms/networks often suffer from interference: one user's assignment to the treatment or control affects another user's outcome.

Cluster-based experimental design

Ride-sharing Chamandy (2016)

- Experiments in online platforms/networks often suffer from interference: one user's assignment to the treatment or control affects another user's outcome.
- Common practice: (i) group users who likely have substantial impact on each others' outcomes into clusters, (ii) assign all users in a cluster to the same variant.

 \implies often leads to a small **bias** (if any)

Cluster-based experimental design

Social network Eckles et al. (2016)

Ride-sharing Chamandy (2016)

- Experiments in online platforms/networks often suffer from interference: one user's assignment to the treatment or control affects another user's outcome.
- Common practice: (i) group users who likely have substantial impact on each others' outcomes into clusters, (ii) assign all users in a cluster to the same variant.

 \implies often leads to a small **bias** (if any)

 Research question: obtain the "best" (correlated) randomized assignment to minimize variance.

- Each cluster *i* receives a **treatment** = "**1**" or **control** = "**0**" variant
 - $Z_i = 1$ or 0: indicator of assignment

- Each cluster *i* receives a **treatment** = "**1**" or **control** = "**0**" variant
 - $Z_i = 1$ or 0: indicator of assignment
- A cluster i has a treatment (control) outcome $y_{i1}(y_{i0})$ if it receives the treatment (control) assignment

- Each cluster *i* receives a **treatment** = "1" or **control** = "0" variant
 - $Z_i = 1$ or 0: indicator of assignment
- A cluster *i* has a treatment (control) outcome y_{i1} (y_{i0}) if it receives the treatment (control) assignment
- Objective: estimate the total market effect $\tau \triangleq \sum_{i \in [n]} y_{i1} \sum_{i \in [n]} y_{i0}$

- Each cluster *i* receives a **treatment** = "1" or **control** = "0" variant
 - $Z_i = 1$ or 0: indicator of assignment
- A cluster *i* has a treatment (control) outcome y_{i1} (y_{i0}) if it receives the treatment (control) assignment
- Objective: estimate the total market effect $\tau \triangleq \sum_{i \in [n]} y_{i1} \sum_{i \in [n]} y_{i0}$
- Use the unbiased Horvitz-Thompson estimator:

$$\hat{\tau} \triangleq \sum_{i \in [n]} y_{i1} \frac{Z_i}{\mathbb{P}[Z_i = 1]} - \sum_{i \in [n]} y_{i0} \frac{1 - Z_i}{\mathbb{P}[Z_i = 0]}$$

A platform conducts binary experiment over n disjoint (and heterogeneous) clusters:

- Each cluster *i* receives a **treatment** = "1" or **control** = "0" variant
 - $Z_i = 1$ or 0: indicator of assignment
- A cluster i has a treatment (control) outcome $y_{i1}(y_{i0})$ if it receives the treatment (control) assignment
- **D Objective:** estimate the total market effect $\tau \triangleq \sum_{i \in [n]} y_{i1} \sum_{i \in [n]} y_{i0}$
- Use the unbiased Horvitz-Thompson estimator:

$$\hat{\tau} \triangleq \sum_{i \in [n]} y_{i1} \frac{Z_i}{\mathbb{P}[Z_i = 1]} - \sum_{i \in [n]} y_{i0} \frac{1 - Z_i}{\mathbb{P}[Z_i = 0]}$$

■ Goal: design joint distribution (or correlation) of $(Z_i)_{i \in [n]}$ to minimize variance of the estimation

Problem: minimize variance $\mathbb{V}ar[\hat{\tau}]$ against the worst-case potential outcomes

$$V^{\text{\tiny OPT}} = \min_{\substack{P \in \mathcal{P}_q \\ y_{i1} \in [0, w_{i1}], \ \forall i \in [n]}} \max_{\substack{y_{i0} \in [0, w_{i1}], \ \forall i \in [n]}} \mathbb{V}\mathrm{ar}\left[\hat{\tau}\right].$$

 $\mathcal{P}_q \triangleq$ set of joint assignment distributions with marginal prob $q \in (0,1)$

Problem: minimize variance $\mathbb{V}ar[\hat{\tau}]$ against the worst-case potential outcomes

$$\begin{split} V^{^{\mathrm{OPT}}} &= \min_{\substack{P \in \mathcal{P}_q \\ y_{i1} \in [0, w_{i0}], \\ y_{i1} \in [0, w_{i1}], \ \forall \ i \in [n]}} \mathbb{V}\mathrm{ar}\big[\hat{\tau}\big]. \\ \mathcal{P}_q &\triangleq \text{set of joint assignment distributions with marginal prob } q \in (0, 1) \\ \bullet \text{ Potential outcomes: non-negative and bounded} \end{split}$$

▶ Upper bounds w_{i1} , w_{i0} can vary cross clusters and treatment/control variants

Problem: minimize variance $\mathbb{V}ar[\hat{\tau}]$ against the worst-case potential outcomes

• Joint assignment dists: $\forall i \in [n]$: $\mathbb{P}[Z_i = 1] = q \in (0, 1)$

Lemma With any cluster-based randomized experiment, the worst-case potential outcome is such that for any cluster $i \in [n]$, either $y_{i1} = y_{i0} = 0$, or $y_{i1} = w_{i1}$ and $y_{i0} = w_{i0}$. The variance of the HT estimator is

$$\mathbb{V}\mathrm{ar}\big[\hat{\tau}\big] = y^{\mathrm{T}}\Sigma y,$$

where $y_i = \sqrt{q(1-q)} \cdot \left(\frac{y_{i1}}{q} + \frac{y_{i0}}{1-q}\right)$, and Σ is the correlation matrix of the assignments $(Z_i)_{i \in [n]}$.

Lemma With any cluster-based randomized experiment, the worst-case potential outcome is such that for any cluster $i \in [n]$, either $y_{i1} = y_{i0} = 0$, or $y_{i1} = w_{i1}$ and $y_{i0} = w_{i0}$. The variance of the HT estimator is

$$\mathbb{V}\mathrm{ar}\big[\hat{\tau}\big] = y^{\mathrm{T}}\Sigma y,$$

where $y_i = \sqrt{q(1-q)} \cdot \left(\frac{y_{i1}}{q} + \frac{y_{i0}}{1-q}\right)$, and Σ is the correlation matrix of the assignments $(Z_i)_{i \in [n]}$.

under joint distribution P

correlation matrix

The optimization problem becomes

$$V^{\text{OPT}} = \min_{P \in \mathcal{P}_q} \max_{y_i \in [0, w_i], \forall i \in [n]} y^{\mathsf{T}} \Sigma(P) y,$$

with $w_i \triangleq \sqrt{q(1-q)} \cdot \left(\frac{w_{i1}}{q} + \frac{w_{i0}}{1-q}\right)$.

The optimization problem:

$$V^{\text{OPT}} = \min_{P \in \mathcal{P}_q} \max_{y \in \mathsf{X}_{i \in [n]} \{0, w_i\}} y^{\mathsf{T}} \Sigma(P) y$$

- Difficult to solve: number of decision variables/comstraints exponential in number of clusters
- Difficult to interpret and implement: correlation structure can be complicated

The optimization problem:

$$V^{\text{OPT}} = \min_{P \in \mathcal{P}_q} \max_{y \in \mathsf{X}_{i \in [n]} \{0, w_i\}} y^{\mathsf{T}} \Sigma(P) y$$

- Difficult to solve: number of decision variables/comstraints exponential in number of clusters
- Difficult to interpret and implement: correlation structure can be complicated

For the Facebook example (cluster sizes w_i : 1190, 747, 741, 537, 315, 203, 59), correlation matrix of the optimal experiment with $q = \frac{1}{2}$ is:

	decreasing sizes							
	Γ 1	-0.314	-0.311	-0.226	-0.132	-0.085	-0.087]	Т
	-0.314	1	-0.268	0	0	0	-0.242	
$\Sigma^* =$	-0.311	-0.268	1	-0.402	-0.019	0	0.100	
	-0.226	0	-0.402	1	0	0	0	
	-0.132	0	-0.019	0	1	0	0.237	
	-0.085	0	0	0	0	1	0	
	[-0.087]	-0.242	0.100	0	0.237	0	1	↓

decreasing sizes

- Randomize over 36 possible assignment vectors with different probabilities
- It even deliberately introduces *positive correlation* between pairs

When clusters have equal "sizes" w_i (WLOG, $w_i = 1$ for all $i \in [n]$):

When clusters have equal "sizes" w_i (WLOG, $w_i = 1$ for all $i \in [n]$):

Lemma The optimal experiment randomly assigns a fraction q of the clusters to treatment. The correlation between assignments of any two clusters is $\sigma \approx -\frac{1}{n-1}$. The worst-case variance is $V^{\text{OPT}} \approx \frac{n}{4}$.

When clusters have equal "sizes" w_i (WLOG, $w_i = 1$ for all $i \in [n]$):

Lemma The optimal experiment randomly assigns a fraction q of the clusters to treatment. The correlation between assignments of any two clusters is $\sigma \approx -\frac{1}{n-1}$. The worst-case variance is $V^{\text{OPT}} \approx \frac{n}{4}$.

$$\begin{bmatrix} 1 & & \frac{-1}{n-1} \\ & 1 & & \\ \frac{-1}{n-1} & & \ddots \\ & & & 1 \end{bmatrix}$$

correlation matrix of the optimal experiment

When clusters have equal "sizes" w_i (WLOG, $w_i = 1$ for all $i \in [n]$):

Lemma The optimal experiment randomly assigns a fraction q of the clusters to treatment. The correlation between assignments of any two clusters is $\sigma \approx -\frac{1}{n-1}$. The worst-case variance is $V^{\text{OPT}} \approx \frac{n}{4}$.

Price of independence: independently assigning each cluster to treatment has worst-case variance $n \implies$ multiplicative gap = 4.

Independent block randomization (IBR)

We consider a family of independent block randomization experiments:

- 1. Sort clusters in (decreasing) sizes w_i ;
- 2. Partition clusters into blocks so that each block contains clusters of similar sizes;
- 3. Randomly treat a fraction q of the clusters in each block, and do so independently across blocks.

 $w_1 \ w_2 \ w_3 \ w_4 \ w_5 \ w_6 \ w_7 \ w_8 \ \cdots \ \cdots \ \cdots \ w_{n-1} \ w_n$

Independent block randomization (IBR)

We consider a family of independent block randomization experiments:

- 1. Sort clusters in (decreasing) sizes w_i ;
- 2. Partition clusters into blocks so that each block contains clusters of similar sizes;
- 3. Randomly treat a fraction q of the clusters in each block, and do so independently across blocks.

Independent block randomization (IBR)

We consider a family of independent block randomization experiments:

- 1. Sort clusters in (decreasing) sizes w_i ;
- 2. Partition clusters into blocks so that each block contains clusters of similar sizes;
- 3. Randomly treat a fraction q of the clusters in each block, and do so independently across blocks.

- Simple characterization of the worst-case outcome for a block
- The worst-case variance is additive over blocks

 \implies Simple dynamic program to compute the optimal partition!

Performance Trade-off of IBR vs. Optimal

- **Gain:** a larger negative correlation within a block
- Losses come from two sources:
 - independent assignments across blocks
 - ignoring cluster size difference within a block

Performance Trade-off of IBR vs. Optimal

Correlation matrix of an IBR experiment

- Gain: a larger negative correlation within a block
- Losses come from two sources:
 - independent assignments across blocks
 - ignoring cluster size difference within a block

Both losses can be small with a careful design of cluster partitions

Performance analysis

Theorem Let V^{DP} denote the worst-case variance of the optimal IBR experiment.

1. Approximation ratio: for any problem instance,

$$\frac{V^{\rm DP}}{V^{\rm OPT}} \le C(q).$$

$$(C(\frac{1}{2}) = \frac{7}{3} \approx 2.33, C(\frac{1}{3}) = 2, C(\frac{1}{4}) = \frac{7}{3} \approx 2.33 \dots)$$

2. Asymptotic optimality:

$$\frac{V^{\mathrm{DP}} - V^{\mathrm{OPT}}}{V^{\mathrm{OPT}}} = O\left(\sqrt{\frac{w_1^2}{\sum_{i \in [n]} w_i^2}}\right)$$

Performance analysis

Theorem Let V^{DP} denote the worst-case variance of the optimal IBR experiment.

1. Approximation ratio: for any problem instance,

$$\frac{V^{\rm DP}}{V^{\rm OPT}} \le C(q).$$

 $(C(\frac{1}{2}) = \frac{7}{3} \approx 2.33, C(\frac{1}{3}) = 2, C(\frac{1}{4}) = \frac{7}{3} \approx 2.33 \dots)$

Performance analysis

Theorem Let V^{DP} denote the worst-case variance of the optimal IBR experiment.

1. Approximation ratio: for any problem instance,

$$\frac{V^{\rm DP}}{V^{\rm OPT}} \le C(q).$$

 $(C(\frac{1}{2}) = \frac{7}{3} \approx 2.33, C(\frac{1}{3}) = 2, C(\frac{1}{4}) = \frac{7}{3} \approx 2.33 \dots)$

- Performance is substantially better in numerical study.
- Stronger results for more specific settings.

Back to Facebook example

- \blacksquare Partition the network using the classic Louvain algorithm, and merge two clusters if one contaminates more than 10% of the second one.
- n = 7 clusters of different sizes; "contaminated" users $\sim 6\%$.
- Consider marginal assignment probability $q = \frac{1}{2}$.

Source: Stanford SNAP Datasets

Facebook example

- <u>Reminder</u>: The optimal cluster-based assignment is difficult to solve and has a complicated correlation structure:
 - ▶ Randomizes over 36 possible assignment vectors with different probabilities.
 - Even deliberately introduces positive correlation between small clusters.

$$\Sigma_c^* = \begin{bmatrix} 1 & -0.314 & -0.311 & -0.226 & -0.132 & -0.085 & -0.087 \\ -0.314 & 1 & -0.268 & 0 & 0 & 0 & -0.242 \\ -0.311 & -0.268 & 1 & -0.402 & -0.019 & 0 & 0.100 \\ -0.226 & 0 & -0.402 & 1 & 0 & 0 & 0 \\ -0.132 & 0 & -0.019 & 0 & 1 & 0 & 0.237 \\ -0.085 & 0 & 0 & 0 & 0 & 1 & 0 \\ -0.087 & -0.242 & 0.100 & 0 & 0.237 & 0 & 1 \end{bmatrix}$$

Facebook example

- <u>Reminder</u>: The optimal cluster-based assignment is difficult to solve and has a complicated correlation structure:
 - ▶ Randomizes over 36 possible assignment vectors with different probabilities.
 - Even deliberately introduces positive correlation between small clusters.
- The optimal IBR experiment has a simple structure:

$$\Sigma^{\rm DP} = \begin{bmatrix} \begin{matrix} -1/3 & -1/3 & -1/3 & -1/3 \\ -1/3 & 1 & -1/3 & -1/3 & 0 & 0 & 0 \\ -1/3 & -1/3 & 1 & -1/3 & 0 & 0 & 0 \\ -1/3 & -1/3 & 1 & -1/3 & 0 & 0 & 0 \\ -1/3 & -1/3 & -1/3 & -1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1/3 & 1 & -1/3 \\ 0 & 0 & 0 & 0 & -1/3 & 1 & -1/3 \\ 0 & 0 & 0 & 0 & 0 & -1/3 & 1 & -1/3 \\ 0 & 0 & 0 & 0 & 0 & -1/3 & -1/3 \\ \end{bmatrix}$$

Facebook example

- <u>Reminder</u>: The optimal cluster-based assignment is difficult to solve and has a complicated correlation structure:
 - ▶ Randomizes over 36 possible assignment vectors with different probabilities.
 - Even deliberately introduces positive correlation between small clusters.
- The optimal IBR experiment has a simple structure:

$$\Sigma^{\rm DP} = \begin{bmatrix} \begin{matrix} -1 & -1/3 & -1/3 & -1/3 \\ -1/3 & 1 & -1/3 & -1/3 \\ -1/3 & -1/3 & 1 & -1/3 \\ -1/3 & -1/3 & 1 & -1/3 \\ -1/3 & -1/3 & 1 & -1/3 \\ 0 & 0 & 0 & 0 \\ -1/3 & -1/3 & -1/3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/3 & 1 \\ 0 & 0 & 0 & 0 \\ -1/3 & -1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1/3 & -1/3 \\ 0 & 0 \\ 0 & 0 & 0 \\ -1/3 & -1/3 \\ 0 \\ 0 & 0 & 0 \\ -1/3 & -1/3 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -1/3 & -1/3 \\ -$$

- The optimal IBR experiment: $(V^{\rm DP} V^{\rm OPT})/V^{\rm OPT} = 7\%$.
- Randomly treating half of the clusters: $(V^{\text{half}} V^{\text{OPT}})/V^{\text{OPT}} = 31.3\%$.
- Pair matching experiment: $(V^{\text{pair}} V^{\text{OPT}})/V^{\text{OPT}} = 46.0\%$.
- Independent cluster-based assignment: $(V^{\text{ind}} V^{\text{OPT}})/V^{\text{OPT}} = 108.5\%$.

Takeaways and future directions

- We study robust experimental design for cluster-based randomization.
- We develop simple IBR experiments that (i) attain good approximation ratio and (ii) are asymptotically optimal with many clusters under mild conditions.
- **Operational takeaway:** collecting similar clusters together and randomly treating a fraction *q* in each block is near-optimal.
- Future work:
 - Optimal bias-variance trade-off
 - Careful empirical study based on real data

Reference: O. Candogan, C. Chen, and R. Niazadeh, "Correlated Cluster-Based Randomized Experiments: Robust Variance Minimization." *Management Science* (forthcoming).

Working paper available at https://papers.ssrn.com/abstract=3852100

Appendix

Related Literature—CS/ECON/OR/STAT

Experimental design in networks:

- General networks: [Eckles et al., 2016], [Aronow et al., 2017], [Ugander and Yin, 2020]
- Bipartite networks: [Zigler and Papadogeorgou, 2018], [Pouget-Abadie et al., 2019], [Doudchenko et al., 2020],[Harshaw et al., 2021]

Experimental design in online platforms:

- Analysis of bias: [Johari et al., 2020]
- Analysis of marketplace equilibrium: [Wager and Xu, 2021]
- Switchback experiments: [Bojinov et al., 2020],[Glynn et al., 2020]
- Relevant empirical work: [Ostrovsky and Schwarz, 2011],[Blake and Coey, 2014],[Zhang et al., 2020],[Holtz et al., 2020],[Holtz and Aral, 2020]

Models of potential outcomes:

- Covariate model: [Bertsimas et al., 2015], [Bertsimas et al. 2019], [Kallus, 2018], [Bhat et al., 2020], [Harshaw et al., 2019], etc.
- Worst-case potential outcomes: [Bojinov et al., 2020] (we follow the same framework)

And many more!