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Abstract

In decentralized dynamic matching markets, agents can benefit from sharing their resources,
but they will collaborate only if properly incentivized. Motivating applications include multi-
hospital kidney exchanges and job-hunting markets. This paper explores the design of non-
monetary mechanisms to incentivize collaboration in decentralized matching markets. We study
a model with multiple self-interested agents, each managing a local multi-way dynamic matching
problem, where jobs of different types arrive stochastically at each agent and remain available
to match for a limited time. Each agent holds private information about her job amounts and
actions and aims to maximize her long-run average matching reward.

We design a simple, non-monetary mechanism that incentivizes agents to submit all their jobs
to a shared pool upon arrival, enabling centralized matching at the shared pool. The mechanism
achieves this by randomly selecting an agent (with a specified probability) to perform a matching
and collect the associated matching reward. We demonstrate that under the mechanism, it is in
each agent’s best interest to submit all her jobs to a shared pool—resulting in system efficiency
that matches that of a centralized setting—in a large market regime with many agents.

Subject classifications: Decentralized matching, market design, multi-way matching, impatient
jobs, stochastic optimization, fluid approximation.



1 Introduction

Matching markets play a crucial role in connecting diverse items to form mutually beneficial re-

lationships, with applications spanning both for-profit and non-profit platforms. A well-studied

setting is centralized matching, where a central planner controls all items, and the focus is on de-

signing algorithms to maximize match value as different types of items enter and exit the market-

place. In this paper, we shift our attention to the decentralized setting, which introduces additional

challenges beyond algorithm design. Specifically, we explore how to incentivize self-interested en-

tities, each controlling their own sources of items, to contribute to the marketplace in a way that

maximizes overall efficiency. To do so, we need to handle strategic behavior and prevent free-riding.

We begin by presenting two motivating examples.

Example 1: Multi-Hospital Kidney Exchange. Kidney exchanges enable (two or more) patients

with willing but incompatible donors to swap kidneys, ensuring each patient receives a compatible

organ (Roth et al., 2005). Each kidney transplant saves the expensive cost of dialysis and results

in a welfare gain exceeding $1 million (Held et al., 2016). In 2019, more than 1,500 kidney ex-

change transplants were performed in the US, and the number is rapidly increasing (Agarwal et al.,

2021). However, donor-patient pairs are typically registered at individual hospitals or transplant

centers, leading to a decentralized matching process where hospitals may prioritize their own in-

terests. Despite efforts to create a national-level exchange to facilitate more compatible matches,

hospitals often exhibit free-riding behavior by withholding easy-to-match pairs for internal match

and submitting only hard-to-match pairs to the national exchange (Ashlagi and Roth, 2014). A

critical research challenge in this application is determining how to incentivize hospitals to enroll

all donor-patient pairs in the national exchange, thereby maximizing overall system efficiency.

Example 2: Collaboration among Matching Intermediaries. Two-sided matching intermediaries,

such as real estate and head-hunting agents, facilitate the matching of supply with demand. A dis-

tinctive feature of these markets is the network effect, where the value of an intermediary increases

with its user base (Banton, 2024). This suggests that even competing intermediaries could benefit

from granting each other access to their customers and resources, paving the way for collaboration

among them. For example, in job-hunting markets, both job openings and candidates are available

on the market for only a limited time, due to evolving outside options or changing market con-

ditions. Headhunters can share job opportunities and candidates among themselves to facilitate

matching. However, it is not immediately clear that sharing resources benefits all parties, and the
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central research question is how to design incentives that encourage intermediaries to collaborate

fully and willingly.

These applications share several common features. The market is fragmented, and greater value

can be achieved in a thicker market. Decisions are dynamic—items such as donor-patient pairs and

job candidates and opportunities arrive over time and can expire if left unmatched for too long.

Participants, such as hospitals and other matching intermediaries, are strategic and possess private

information about their items and will only participate (e.g., by sharing items) if it aligns with

their interests to do so. In this paper, we develop and analyze a model that incorporates these key

features. We focus on a decentralized dynamic matching market with multiple strategic agents.

Each agent faces a dynamic multi-way matching1 problem (the local problem), where items (or

jobs) of different types arrive over time and remain available for matching for a limited amount of

time. Information regarding the arrival of jobs is private to each agent. Different types of matches

require different combinations of jobs and yield different rewards, although the reward structure is

the same for all agents. In addition to making local matches, an agent has the option to submit

jobs to a shared entity, with the reward for this action being determined by a designed mechanism.

The goal of each agent is to maximize her long-run average payoff from matching and submitting.

We address the mechanism design problem aimed at maximizing social welfare, defined as the total

matching reward accumulated across all agents.

As nicely summarized by Ashlagi and Roth (2021), the decentralized matching problem com-

prises two key components: submission and matching. Extensive literature examines each of these

aspects in isolation. Studies on the submission component, primarily from the market design lit-

erature, focuses on incentivizing agents (such as hospitals) to submit all items (see, e.g., Sönmez

and Ünver 2013, Ashlagi and Roth 2014, and Agarwal et al. 2019). However, these studies of-

ten rely on static models, which do not capture market frictions related to limited item lifespans

(e.g., donor-patient pairs in kidney exchange) and market dynamics. On the other hand, works on

(centralized) dynamic matching (e.g., Aouad and Sarıtaç 2022 and Aveklouris et al. 2024) develop

algorithms with theoretical performance guarantees but generally do not account for the incentives

of market participants. Our work advances the literature by jointly considering both submission

and matching in a decentralized dynamic setting. Tackling this market design problem is challeng-

ing yet important. The primary challenge lies in analyzing a dynamic game with a large strategy

space and incomplete information. This problem is important because, as highlighted by Ashlagi

1That is, a match can connect two or more jobs.
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and Roth (2021), mechanisms that offer good incentives in static models may prove inefficient in

practical settings. Hence, there is a need for a deeper understanding of dynamic mechanisms that

can achieve high efficiency.

1.1 Overview of Results and Contributions

Our main contribution includes proposing both monetary and non-monetary mechanisms for the

decentralized dynamic matching problem and rigorously analyzing their performance in the result-

ing equilibrium. These mechanisms are simple and intuitive. Below, we elaborate on our main

results.

The key observation underlying all our proposed mechanisms is as follows (Section 4.1): If each

submitted job earns the submitting agent a reimbursement equal to the job’s marginal value in

the aggregate (centralized) matching problem, it becomes a dominant strategy for all agents to

submit all jobs upon arrival, regardless of the number of jobs they have or the strategies of other

agents. Notably, obtaining the jobs’ marginal values only requires solving the fluid relaxation of the

centralized matching problem, which involves only the aggregate job arrival rates and the matching

rewards, thus requiring minimal information about each individual agent. This observation leads to

a monetary mechanism that may be well-suited for for-profit platforms, such as head-hunting and

ride-sharing. Under this mechanism, the agents’ incentives align with social welfare as characterized

by the centralized matching problem, although the agents may have different job arrival rates.

We next demonstrate that the above form of reimbursement can be implemented equivalently

without relying on monetary transfers, using a randomized matching allocation (Section 4.2). This

mechanism may be more suitable for non-profit platforms, such as kidney exchanges. Specifically,

we propose a randomized matching allocation where, when a match is about to be performed, it

is assigned to one of the participant jobs with a probability proportional to the job’s marginal

value. The submitting agent of that job then executes the match (e.g., performs the transplant

in the kidney exchange setting) and receives the matching reward. As we demonstrate, such a

randomized allocation ensures that the expected value of a submitted job equals its marginal value,

conditional on it being matched, regardless of the specific match it participates in. We then run

a matching algorithm at the shared pool, which is asymptotically optimal as the job arrival rates

scale to infinity; as demonstrated in Section 3, a simple periodic matching policy can achieve this.

We rigorously prove that the proposed mechanism incentivizes all agents to submit all their

jobs upon arrival in a large market regime with many agents (Section 4.3). Intuitively, when all

agents submit their jobs, the job arrival rates at the shared pool grow to infinity in the large
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market regime. Consequently, the shared pool becomes congested, and the fluid relaxation of the

centralized matching problem approximates the dynamics of the shared pool well. As long as the

shared pool operates under an asymptotically optimal matching policy, the probability that a job

with a positive marginal value is matched before departing approaches one. As a result, if an agent

submits a job, it yields an expected payoff equal to its marginal value by the mechanism’s design;

this incentivizes an agent to submit all her jobs. In contrast, if the agent withholds a job, it may

expire before being matched with a positive probability, resulting in a tangible loss. We rigorously

validate this intuition in Section 4.3 and show that all agents submitting jobs fully constitutes an

approximate Nash equilibrium in the original problem, meaning that the benefit of unilaterally

deviating from full submission becomes negligible as the number of agents increases.

Finally, in Section 5, we numerically evaluate the performance of our non-monetary mechanism

on both a simple synthetic example (Section 5.1) and a more realistic example using kidney exchange

data (Section 5.2). We demonstrate that full submission is an approximate equilibrium within our

mechanism in practical settings.

The rest of the paper is organized as follows. Section 1.2 reviews some related work. Section 2

formulates the problem. Section 3 investigates the centralized setting as a benchmark. Section 4

examines the decentralized setting and introduces our monetary and non-monetary mechanisms.

In Section 4.3, we analyze our mechanism and show that all agents submitting their jobs upon

arrival is an approximate equilibrium in the original problem when the number of agents is large.

Section 5 numerically evaluates the performance of our mechanism. Section 6 concludes.

1.2 Related Literature

Our paper relates to several strands of fast-growing literature spanning operations research, eco-

nomics, and computer science.

Incentive Issues in Multi-Hospital Kidney Exchange Since the early days of kidney exchange,

researchers have observed that hospitals participating in multi-hospital kidney exchanges may ben-

efit from strategically reserving easy-to-match donor-patient pairs for internal matches (Sönmez

and Ünver 2013 and Ashlagi and Roth 2014). Subsequent literature propose various mechanisms

to encourage hospitals to submit all their pairs and use a range of kidney exchange models to pro-

vide theoretical guarantees on the effectiveness of these mechanisms. The pioneering works in this

literature employ static random graphs to model kidney exchanges and design incentivizing mech-

anisms (e.g., Ashlagi and Roth 2014, Toulis and Parkes 2015, and Ashlagi et al. 2015). Leveraging
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neoclassical producer theory, Agarwal et al. (2019) argue through a static optimization problem

that hospitals should be rewarded based on the marginal contribution of the pairs they submit.

Biró et al. (2019) utilize a cooperative game model on a graph and propose mechanisms based on

the Shapley value. This stream of literature predominantly considers a static modeling approach,

where donor-patient pairs do not arrive or depart over time. However, as noted in the survey of

Ashlagi and Roth (2021), matching in a dynamic setting is a critical challenge in kidney exchange,

and mechanisms that offer strong incentives in static models might be inefficient in practice. Our

contribution to this literature lies in proposing and rigorously analyzing a general dynamic model,

which uncovers strategic hospital behaviors absent in static models. It is worth noting that our

proposed mechanism resembles the one introduced in Agarwal et al. (2019), where rewards are

based on the marginal value of submitted pairs. However, there are some key differences. First, we

propose a randomized matching allocation to reimburse submissions, whereas Agarwal et al. (2019)

use a point system. Additionally, we rigorously characterize the performance of the marginal value-

based mechanism in a more realistic dynamic model with limited information, whereas Agarwal

et al. (2019) analyze it in a static model.

Centralized Dynamic Matching While our focus is on incentivizing agents in a decentralized

dynamic matching market to submit all items, a related question is how to design algorithms

to match these submitted items. Our mechanism is agnostic to the specific matching algorithm

used in the shared pool (Remark 3.2), although the choice of the the algorithm does influence

our performance guarantees. Many studies study the dynamic matching problem where items exit

the system if they remain unmatched for a certain duration, somewhat aligning with our setting

(see, e.g., Aouad and Sarıtaç 2022, Aveklouris et al. 2024, Akbarpour et al. 2020, Ashlagi et al.

2023). More recently, a stream of literature has focused on any-time low-regret dynamic matching

algorithms within a finite-horizon setting (Kerimov et al. 2023, Kerimov et al. 2024, Gupta 2024,

Wei et al. 2023). Although the context differs, these studies highlight the connection between

algorithm performance (i.e., regret) and the structural properties of the fluid approximation of the

matching problem, such as dual degeneracy, which we also observe in our problem setting.

Cooperation Mechanism in Other Setups Some researchers have explored ways to incentivize

cooperation among companies and platforms in various applications beyond dynamic matching. For

example, studies examine cooperation among airline companies, i.e., airline alliances (Netessine and

Shumsky 2005, Wright et al. 2010, Hu et al. 2013), as well as among ride-sharing companies (Cohen
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and Zhang, 2022) and manufacturing firms (Roels and Tang, 2017).

Finally, some papers apply cooperative game theory to allocate the total costs or profits among

agents to sustain cooperation (see, e.g., Anily and Haviv 2010, Karsten et al. 2015, Liu and Yu

2022). However, the implementation of this approach to our setting would require agents to be

able to monitor the actions and job counts of all other agents to ensure that all pairs are indeed

submitted. Given our focus on a private information setting, we adopt a non-cooperative game

approach in this paper. In a similar manner, Chen et al. (2023) explore a non-cooperative game

approach to incentivize collaboration in a different decentralized queueing setting.

1.3 Notation and Terminology

We let N denote the set of nonnegative integers and N+ the set of strictly positive integers. For

any two integers a, b ∈ N with a ≤ b, we let [a : b] = {a, a + 1, . . . , b − 1, b} denote a sequence of

integers starting from a and ending with b, and we denote [n] = [1 : n] for any n ∈ N+. For any

real number x ∈ R, we let (x)+ ≜ max{x, 0} denote the maximum of x and 0. Given a vector

x = (xi)i∈[n] ∈ Rn, we let x ≥ 0 denote xi ≥ 0 for any entry i ∈ [n].

2 Model Formulation

We consider a continuous-time model with N strategic agents. Each agent i ∈ [N ] manages a local

dynamic multi-way matching. Specifically, there are J types of jobs in the system. Jobs of each

type j ∈ [J ] arrive at agent i following an independent Poisson process with a rate of λij ≥ 0. Let

λi = (λij)j∈[J ] ∈ RJ
+ denote the concatenation of arrival rates at agent i. Jobs expire if not matched

within a certain amount of time. The waiting time of a type-j job is exponentially distributed with

a rate parameter of θj > 0 for any j ∈ [J ].

There are K types of matchings. A matching m ∈ [K] requires Mjm ∈ N units of type-

j jobs and creates a reward of rm > 0 for any agent. Each match requires at least two jobs;

that is,
∑

j∈[J ]Mjm ≥ 2 for any m ∈ [K]. Matched jobs leave the system immediately. We let

r = (rm)m∈[K] ∈ RK
+ represent the concatenation of matching rewards, rmax ≜ maxm∈[K] rm < ∞

the maximum matching reward, and M = (Mjm)j∈[J ],m∈[K] ∈ NJ×K the matching matrix.

We shall consider a large market regime with many agents, and we make the following regularity

assumption.

Assumption 2.1. The total job arrival rate
∑

i∈[N ] λi satisfies
∑

i∈[N ] λi = N · λ ∈ RJ
+ for some

vector λ = (λj)j∈[J ], where λj > 0 for all j ∈ [J ]. In addition, there exists some constants Cj > 0
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such that for any i ∈ [N ] and j ∈ [J ], we have λij/λj ≤ Cj .

Assumption 2.1 requires that the agents’ job arrival rates are not too different from one another.

This assumption holds, for example, for a high multiplicity model in which agents are partitioned

into a fixed number L of types, and the number of each type-ℓ agents is a fixed proportion αℓ of

the total agent population. In addition, agents of the same type ℓ have the same arrival rate vector

λℓ = (λℓj)j∈[J ] ∈ RJ
+, leading to λ ≜

∑
ℓ∈[L] αℓ λℓ and Cj ≜ maxℓ∈[L] λℓj/λj .

Local Dynamics For each agent i ∈ [N ] and job type j ∈ [J ], we let Dij(t) denote the number of

type-j jobs that have arrived at agent i by time t, which follows a Poisson process with rate λij

by assumption. Let Nim(t) represent the number of type-m matchings that agent i performs and

Tih,j(t) the number of type-j jobs that agent i transfers to another agent h ̸= i, both by time t.

Both Nim(t) and Tih,j(t) depend on the strategies of agent i. Finally, let Xij(t) denote the number

of type-j jobs agent i possesses at time t, and Aij(t) the number of type-j jobs that have expired at

agent i by time t. The process Aij(t) depends on Xij(t), as each of the Xij(t) type-j jobs expires

within the next ∆t units of time with a probability of θj∆t, provided it has not been matched and

assuming that ∆t is sufficiently small. The dynamics of agent i’s jobs can be described as follows:

Xij(t) = Xij(0) +Dij(t) +
∑
h̸=i

(
Thi,j(t)− Tih,j(t)

)
−

∑
m∈[K]

MjmNim(t)−Aij(t), ∀ j ∈ [J ].

Agents’ Problem Agents operate in self-interest, and each maximizes her own expected long-run

average payoff from matching over an infinite time horizon, as follows:

lim inf
t→∞

1

t
Vi(t) , where Vi(t) ≜ E

 ∑
m∈[K]

rmNim(t)

 .

We assume that each agent holds private information about her job arrival process and actions. As

a result, the number of jobs of different types she currently holds and the internal matching she

performs are unobservable to others.

Designer’s Problem On the other hand, the designer would like to design a mechanism to incen-

tivize agent cooperation and maximize the social welfare—that is, the total long-run average payoff

from matching:

lim inf
t→∞

1

t

∑
i∈[N ]

Vi(t) .
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The designer has limited information about individual agents and knows only the aggregate job

arrival rate λ ∈ RJ
+,

2 the matching reward vector r ∈ RK
+ , and the matching matrix M ∈ NJ×K .

3 The Centralized Matching

In this section, we study the centralized, full-information setting as a benchmark. In this setting,

a central planner has full control over the agents, observes the job arrivals and departures at each

agent, and maximizes the expected long-run average payoff of the entire system. Since there is only

one agent (the central planner), we adopt the notation defined for the local dynamics and drop the

dependence on the index i throughout the section. Let V ∗ denote the long-run average payoff from

centralized matching. Recalling that Nλ is the aggregate job arrival rates, problem (1) provides a

fluid relaxation for the centralized control problem.

V F(λ) = max
x∈RK

+

rTx

s.t. Mx ≤ λ.

(1)

Lemma 3.1. We have that V ∗ ≤ V F(Nλ) = N · V F(λ).

We prove Lemma 3.1 in Appendix A.1. Let V F ≜ V F(λ) and x̄ = (x̄m)m∈[K] ∈ RK
+ denote an

optimal solution to (1). The dual problem of (1) is given by (2).

min
p∈RJ

+

λTp

s.t. MTp ≥ r.

(2)

Let p̄ = (p̄j)j∈[J ] ∈ RJ
+ denote an optimal solution to (2). We can interpret the value of p̄j as the

marginal value of a type-j job to the payoff of the centralized problem.

3.1 Asymptotically Optimal Matching Policy

In this section, we examine a simple periodic matching policy, denoted by πP, which is asymptoti-

cally optimal in the large market regime (i.e., when N → ∞).

Let p̄ = (p̄j)j∈[J ] be an optimal solution to (2). Define M0 ≜
{
m ∈ [K] :

∑
j∈[J ] p̄j Mjm > rm

}
as the set of suboptimal matchings in the fluid relaxation (1). To interpret this definition, note

that for any optimal solution x̄ = (x̄m)m∈[K] to (1), complementary slackness implies that x̄m = 0

2Knowing only the relative values of the aggregate job arrival rate (λj)j∈[J] will be sufficient for our mechanism.
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for all m ∈ M0. Therefore, no match in M0 is used by any optimal solution to (1). Let M+ ≜

[K] \M0 =
{
m ∈ [K] :

∑
j∈[J ] p̄j Mjm = rm

}
represents the set of matchings that may be used in

the fluid relaxation (1). In what follows, we impose the constraint xm = 0 for all m ∈ M0 into (1)

without loss of optimality.

Definition 3.1 (Periodic Matching Policy). At each time point t = k∆, where ∆ ∈ R is a fixed time

interval and k ∈ N+, given the system state X(t) ∈ NJ (representing the number of jobs of each

type at time t), the periodic matching policy πP first solves the fluid relaxation V F(X(t)) (imposing

the constraint xm = 0, ∀m ∈ M0) to obtain an optimal solution x∗ ∈ RK
+ , and then performs ⌊x∗m⌋

type-m matchings for every m.

In words, the central planner solves an optimal matching in every ∆ units of time and imple-

ments the matching. In the following, we show that this policy is asymptotically optimal with an

appropriately selected value of ∆ and we analyze the dynamics of the system under this policy.

We first demonstrate in Lemma 3.2 that the policy πP is asymptotically optimal in the large

market regime in the centralized setting.

Lemma 3.2 (Asymptotic Optimality). Let the interval length be ∆ = N− 1
3 . The performance of the

periodic matching policy, denoted by V P, satisfies

V ∗ − V P

V ∗ ≤ NV F − V P

NV F
≤ C1 ·N− 1

3

for some constant C1 > 0.

We prove Lemma 3.2 in Appendix A.2. Lemma 3.2 indicates that the fluid relaxation (1) is

asymptotically tight and the policy πP is asymptotically optimal. In the proof, we decompose

the loss of policy πP relative to the fluid relaxation upper bound over a time interval of length

∆ into three components: the expiration loss, concavity loss, and rounding loss. First, jobs that

arrive depart at a certain rate, leading to the expiration loss. To mitigate this, the planner would

prefer a small ∆ to conduct matches frequently. However, even in the absence of job departures,

there remains a loss relative to the fluid relaxation due to fluctuations in job arrivals, as the

function V F(λ) is concave (concavity loss).3 To mitigate this, the planner would prefer a large ∆

to accumulate sufficient jobs before matching. Finally, implementing a rounded solution incurs a

bounded loss per period. To minimize this loss relative to the payoff during the time interval, the

planner would again prefer a large ∆ to reduce the frequency of rounding. In the proof, we bound

3The concavity of V F(λ) follows from (2) and strong duality.
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each of these three losses. The concavity loss dominates the rounding loss, and we determine the

optimal value of ∆, which turns to be Θ
(
N− 1

3

)
, to balance the concavity loss and expiration loss.

We next demonstrate that the performance guarantee of policy πP can be strengthened if the

fluid relaxation (1) satisfies some regularity condition termed non-degeneracy, which requires that

the optimal dual variable p̄ is stable under small perturbations of the aggregate job arrival rates

λ. We first define the non-degeneracy condition in Definition 3.2.

Definition 3.2 (Non-Degeneracy Condition). Problem (1) is non-degenerate if there exists a positive

constant δ > 0 and a dual variable p̄ ∈ RJ
+ such that p̄ is the unique optimal dual variable of

V F(λ′) for any λ′ such that ||λ′ − λ||∞ ≤ δ.

Remark 3.1 presents necessary and sufficient conditions for the non-degenerate condition. These

conditions follow from the fact that V F(λ) is piecewise linear and concave in λ, and that p̄ ∈ RJ
+

is an optimal dual variable of V F(λ) if and only if it is a subgradient of V F(·) at the point λ. We

provide more details in Appendix A.3.

Remark 3.1 (Necessary and Sufficient Conditions for Definition 3.2). We have the following:

1. (Necessary and Sufficient Condition) (1) is non-degenerate if and only if it has a unique

optimal dual solution p̄.

2. (Sufficient Condition) (1) is non-degenerate if it has a non-degenerate primal optimal basic

feasible solution.4

Lemma 3.3 strengthens the performance of the policy πP under the non-degeneracy condition.

Lemma 3.3. Suppose that (1) is non-degenerate (i.e., Definition 3.2 holds), and denote by V P the

performance of the periodic matching policy πP. The following hold:

1. Let the interval length be ∆ = N− 1
2 ; then

V ∗ − V P

V ∗ ≤ NV F − V P

NV F
≤ C2 ·N− 1

2

for some constant C2 > 0.

2. If, in addition, the matching matrix M is totally unimodular,5 then by choosing ∆ = c · lnN
N

for some constant c > 0 (which depends only on the values of aggregate job arrival rates λ

4See Section 2.4 of Bertsimas and Tsitsiklis (1997) for the definition of a non-degenerate basic solution.
5For instance, the matching matrix M is totally unimodular when every match requires two jobs of different types.
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and non-degeneracy parameter δ), we have

V ∗ − V P

V ∗ ≤ NV F − V P

NV F
≤ C3

lnN

N

for some constant C3 > 0.

We prove Lemma 3.3 in Appendix A.4. Intuitively, when the non-degeneracy condition holds,

V F(λ) is linear in λ in the vicinity of λ. As a result, the concavity loss is negligible, and we

only need to balance the rounding and expiration losses. Furthermore, if the matching matrix M

is totally unimodular, the rounding loss is eliminated, as the optimal solution to the matching

problem solved at each time point k∆ is always integral. In this case, we can simply select a small

interval length ∆ to minimize the expiration loss.

3.1.1 Convergence of Dynamics

In this section, we analyze the system dynamics under policy πP. We first show in Lemma 3.4 that

the long-run average matching rates under policy πP converge to an optimal solution of (1) in the

large market regime.

Lemma 3.4 (Convergence of Dynamics). Let xP
m ≜ limt→∞ E[Nm(t)]/t denote the long-run average

matching rate of match m under policy πP, and let xP = (xP
m)m∈[K] ∈ RK

+ . There exists a constant

C4 > 0 such that, for any number of agents N , there exists an optimal solution x̄ of (1) satisfying:∣∣∣∣∣∣∣∣xP

N
− x̄

∣∣∣∣∣∣∣∣
∞

≤ C4 ·
NV F − V P

N
.

This, combined with Lemmas 3.2 and 3.3, implies the existence of a constant C5 > 0 such that, for

any number of agents N , there exists an optimal solution x̄ of (1) that satisfies the following:

1. If the interval length is ∆ = N− 1
3 , then

∣∣∣∣∣∣xP

N − x̄
∣∣∣∣∣∣
∞

≤ C5 ·N− 1
3 ;

2. If (1) is non-degenerate and ∆ = N− 1
2 , then

∣∣∣∣∣∣xP

N − x̄
∣∣∣∣∣∣
∞

≤ C5 ·N− 1
2 ;

3. If (1) is non-degenerate, the matching matrix M is totally unimodular, and ∆ = c · lnN
N , where

c is the constant specified in Lemma 3.3, then
∣∣∣∣∣∣xP

N − x̄
∣∣∣∣∣∣
∞

≤ C5 · lnN
N .

We prove Lemma 3.4 in Appendix A.5 by observing that the normalized matching rates xP/N

are feasible to (1) and by leveraging the Lipschitz continuity of the LP optimal solutions with

respect to changes in the constraints’ right-hand side.
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Remark 3.2 (Agnostic to Specific Matching Algorithm). We note that Lemma 3.4 applies to any

asymptotically optimal matching policy besides policy πP, where the convergence rate of the dy-

namics aligns with the respective convergence rate of performance, following the same proof.

Lemma 3.4 implies that the long-run fraction of type-j jobs that participate in the type-mmatch

is approximately Mjmx̄m/λj in the large market regime, as we formally state in Corollary 3.5 and

prove in Appendix A.6.

Corollary 3.5. Let Dj(t) denote the number of type-j jobs that have arrived by time t, and Djm(t)

the number of type-j jobs that have participated in type-m matches by time t under policy π. We

have:

qjm ≜ lim
t→∞

E
[
Djm(t)

Dj(t)

]
= E

[
lim
t→∞

Djm(t)

Dj(t)

]
,

where qjm represents the long-run average fraction of type-j jobs that participate in type-m matches,

and the second equality follows from the bounded convergence theorem because Djm(t) ≤ Dj(t).

Moreover, there exists a constant C6 > 0 such that, for any number of agents N , there exists an

optimal solution x̄ of (1) satisfying:

∣∣∣qjm −Mjmx̄m/λj

∣∣∣ ≤ C6 ·
NV F − V P

N

for any j ∈ [J ] and m ∈ [K].

Let p̄ = (p̄j)j∈[J ] be an optimal dual variable of (1). In the following, we define a job type j as

over-demanded if p̄j > 0, and under-demanded if p̄j = 0. To interpret this definition, let mT
j denote

the j-th row of the matching matrix M and x̄ any optimal solution of (1). By complementary

slackness, mT
j x̄ = λj for any job type j with p̄j > 0. Therefore, the capacity constraint in (1)

is binding for all over-demanded job types. We denote the set of over-demanded job types by

N+ ≜
{
j ∈ [J ] : p̄j > 0

}
and the set of under-demanded job types by N0 ≜ [J ] \ N+. According to

Corollary 3.5, an over-demanded job is matched before departure with probability one in the large

market regime, as we illustrate in Remark 3.3.

Remark 3.3 (Over-Demanded Jobs Matched with Probability One in the Large Market Regime). In the

long run, a type-j job is matched before departure with probability
∑

m∈[K] qjm, which converges

to mT
j x̄/λj in the large market regime (i.e., as N → ∞) according to Corollary 3.5. For an over-

demanded type-j job, since mT
j x̄ = λj , it is matched with probability one before expiration. In

contrast, an under-demanded type-j job remains unmatched before expiration with probability

1−mT
j x̄/λj .
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4 Mechanism for Decentralized Setting

In this section, we describe our mechanism for the decentralized, limited information setting. We

first introduce a mechanism with monetary transfer in Section 4.1, and we describe our non-

monetary mechanism in Section 4.2. In Section 4.3, we show that our mechanism ensures the

achievement of the first-best performance in the large market regime.

4.1 Warm-Up: Mechanism with Monetary Transfer

We first present a mechanism that uses monetary transfer as a preparation for our non-monetary

mechanism in Section 4.2. Let p̄ = (p̄j)j∈[J ] be an optimal dual variable to (1). The mechanism

rewards an agent with a value of p̄j whenever she submits a type-j job to the shared pool. All the

submissions are irrevocable. The mechanism then performs an asymptotically optimal matching in

the shared pool (e.g., implementing the periodic matching policy πP described in Section 3.1). In

the following, we show that this mechanism incentivizes all agents to submit their jobs fully.

To do so, we consider the fluid relaxation to the problem of any agent i under the above

mechanism, which is given in (3).

max
x∈RK

+ ,s∈RJ
+

rTx+ p̄Ts

s.t. Mx+ s ≤ λi.

(3)

In (3), the decision variable xm represents the rate of performing match m locally, and sj represents

the rate of submitting type-j jobs to the shared pool. The constraint requires that, for each job

type, the combined rate of using jobs for local matching and submitting jobs to the shared pool

can not exceed the job arrival rate. The dual problem of (3) is given in (4).

min
p∈RJ

+

λT
i p

s.t. MTp ≥ r,

p ≥ p̄.

(4)

Proposition 4.1 gives optimal solutions to the primal and dual problems.

Proposition 4.1. x = 0 and s = λi is an optimal primal solution and p̄ is an optimal dual solution

to (3), with the optimal value being λT
i p̄.

Proof. Note that x = 0 and s = λi is feasible to (3) and p = p̄ is feasible to (4) because p = p̄ is
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feasible to (2). Moreover, these solutions achieve the same objective value. By weak duality, they

must be optimal solutions to the primal and dual problems, respectively.

Proposition 4.1 shows that submitting all arriving jobs to the shared pool is optimal to an

agent’s fluid relaxation problem (3). Moreover, under the mechanism, the marginal value of a type-

j job to an agent’s problem equals the job’s marginal value in the centralized problem (1), which is

p̄j , regardless of the agent’s individual job arrival rates. Finally, Proposition 4.1 also implies that

it is optimal for an agent to submit all jobs to the shared pool in the original problem, as we state

in Proposition 4.2.

Proposition 4.2. For any agent i ∈ [N ], it is optimal to submit all the jobs to the shared pool upon

arrival, and this yields an expected long-run average payoff of λT
i p̄.

Proof. This is because full submission achieves the fluid relaxation upper bound (3).

Note that the budget is balanced under the monetary mechanism in the large market regime,

as we illustrate in Remark 4.1.

Remark 4.1 (Budget Balance in the Large Market Regime). According to Proposition 4.2, each agent

i ∈ [N ] submits her jobs fully and receives a payoff of λT
i p̄ under the mechanism. Consequently, the

mechanism pays the agents
∑

i∈[N ] λ
T
i p̄ = NλTp̄ = NV F(λ) in total, where the last equality follows

from the strong duality between (1) and (2). On the other hand, since the shared pool implements

an asymptotically optimal matching policy, it collects a matching reward of N (V F(λ)− o(1)) from

the submitted jobs according to Lemmas 3.2 and 3.3. As a result, the mechanism is budget-balanced

in the large market regime, and it distributes the payoff from centralized matching performed at the

shared pool to agents fully and proportionally to each agent’s contribution to centralized matching.

Finally, Proposition 4.3 shows that submitting all jobs to the shared pool is an agent’s unique

optimal strategy if each match requires at least two over-demanded jobs.

Proposition 4.3. Submitting all jobs to the shared pool is the unique optimal strategy for an agent

if every match m requires at least two over-demanded jobs (which may belong to the same type).

We prove Proposition 4.3 in Appendix A.7. Intuitively, when an agent performs some matches

locally, some over-demanded jobs will inevitably expire without being matched and thus be wasted.

As a result, the long-run average payoff will be strictly less than the payoff λT
i p̄ achieved by full

submission.
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4.2 Mechanism without Money Transfer

The key design principle in Section 4.1 is to ensure that submitting a type-j job to the shared pool

is rewarded with its marginal value, p̄j , in the centralized setting. In this section, we show that we

can achieve this without relying on monetary transfer, by allocating a match to an agent with a

specified probability and letting the agent perform the match and collect the corresponding reward.

Let p̄ = (p̄j)j∈[J ] be an optimal solution to (2). Recall from Section 3.1 that we define M+ ≜{
m ∈ [K] :

∑
j∈[J ] p̄j Mjm = rm

}
as the set of matches that might be used in the fluid relaxation

(1). Notably, for any optimal solution x̄ = (x̄m)m∈[K] to (1), complementary slackness implies that

x̄m > 0 only if m ∈ M+. Therefore, matches outside the set M+, denoted by M0 = [K] \M+,

are suboptimal to (1) and can be discarded. Additionally, recall that we impose the constraint

xm = 0 for any m ∈ M0 whenever the periodic matching policy πP solves a matching problem

(Definition 3.1). Therefore, only matches in the set M+ are performed by policy πP.

For any matchm ∈ M+, its reward rm equals the sum of the optimal dual variables p̄j associated

with the participant jobs. Leveraging this fact, instead of reimbursing a job with its marginal value

p̄j as done in Section 4.1, the non-monetary mechanism (approximately) achieves the same outcome

through a random matching allocation when there are many participants. We formally describe

the non-monetary mechanism in Definition 4.1.

Definition 4.1 (Non-Monetary Mechanism). The non-monetary mechanism proceeds as follows:

1. Implement an asymptotically optimal matching policy at the shared pool (e.g., the periodic

matching policy πP described in Definition 3.1).

2. Whenever a type-m match is being performed at the shared pool, assign the match to a

participant job with a probability proportionally to its marginal value (i.e., with a probability

of p̄j/rm) and let the agent of that job perform the match and collect the matching reward

rm. This can be implemented by an automated algorithm such as a smart contract.

Finally, the mechanism permits agents to withdraw any submitted job, provided it has not yet been

matched at the shared pool.

Note that the allocation probabilities in Step 2 are well-defined because
∑

j∈[J ]Mjm · p̄j/rm = 1

by the definition of set M+. Furthermore, a type-j job submitted to the shared pool yields an

expected payoff of p̄j upon being matched, regardless of the specific match type. As a result, an

agent is concerned only with the probability that a job will be matched, rather than the specific

match type, when submitting a job.
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Finally, our mechanism permits agents to withdraw any submitted job as long as it has not been

matched at the shared pool, making it more practical in real-life applications. For example, in the

context of kidney exchange, when a hospital “submits” a donor-patient pair to the national-level

exchange (a virtual shared pool), the pair still remains physically at the hospital. As a result, it

would be difficult for the national-level exchange to prohibit the hospital from using the pair, even

after it has been submitted to the shared pool.

In Section 4.3, we analyze this non-monetary mechanism and demonstrate that all agents sub-

mitting their jobs fully is an approximate equilibrium in the large market regime. Intuitively, when

all agents fully submit their jobs, the probability of an over-demanded job being matched before

expiration approaches one as the number of agents increases (Remark 3.3). Consequently, an ex-

pected payoff of p̄j is ensured by our randomized matching allocation. This, in turn, incentivizes

all agents to submit their jobs fully according to Proposition 4.2.

4.3 Performance Analysis

In this section, we analyze the non-monetary mechanism described in Section 4.2. Specifically, we

show that under the mechanism, all agents submitting their jobs fully to the shared pool constitutes

an approximate Nash equilibrium, meaning that the benefit from unilaterally deviating to other

strategies becomes negligible as the number of agents grows large.

First, we show in Lemma 4.4 that the optimal value of (3) is an upper bound on the long-run

average payoff of an agent under the non-monetary mechanism, regardless of the strategies of other

agents and even when the agent has complete information about the system.

Lemma 4.4. Under the non-monetary mechanism, the long-run average payoff of any agent i is at

most the optimal value of (3), which is λT
i p̄, regardless of the strategies chosen by other agents,

and even when agent i has complete information about the system.

Proof. Let xm represent the long-run average rate at which agent i performs match m locally, and

sj the long-run average rate at which type-j jobs submitted by agent i to the shared pool are

successfully matched. The vectors x = (xm) and s = (sj) are feasible to (3) because, for each job

type, the combined rate of jobs used for local matching and jobs matched at the shared pool can

not exceed the job arrival rate. Moreover, since every type-j job matched at the shared pool yields

agent i an expected payoff of p̄j , irrespective of the match type, the agent’s long-run average payoff

is rTx+ p̄Ts, which is no larger than the optimal value of (3).
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Next, suppose that all agents submit their jobs fully to the shared pool. Since the dynamics

of the shared pool converge to the fluid relaxation (1) for the centralized setting (Lemma 3.4), the

long-run average payoff of agent i is at least λT
i p̄ minus a diminishing term; we state this formally

in Lemma 4.5.

Lemma 4.5. Suppose all agents submit their jobs fully to the shared pool. Then, under the non-

monetary mechanism, the long-run average payoff of agent i is at least λT
i p̄−C6 · NV F−V P

N , where

C6 ≜ rmax ·C4 ·
∑

j∈[J ]Cj
∑

m∈[K]Mjm > 0 is a constant (with Cj and C4 positive constants specified

in Assumption 2.1 and Lemma 3.4, respectively), V P denotes the long-run average matching rewards

collected at the shared pool, and the term NV F−V P

N diminishes to zero at a rate characterized by

Lemmas 3.2 and 3.3.

We prove Lemma 4.5 in Appendix A.8. According to Lemmas 4.4 and 4.5, the benefit of unilat-

erally deviating from full submission is only a negligible term that is O
(
N− 1

3

)
in the general case

and O
(
N− 1

2

)
or O

(
lnN
N

)
when (1) is non-degenerate, even when agent i has complete information

about the system.

5 Numerical Experiments

In Section 4.3, we rigorously justified that submitting jobs fully when all other agents do the same

is a near-optimal best response when the number of agents is large. In this section, we numerically

evaluate the performance of our non-monetary mechanism in practical settings and demonstrate

that full submission is approximately an equilibrium under our mechanism even with a moderate

number of agents. We consider a simple synthetic example in Section 5.1 and a more realistic

example using kidney exchange data in Section 5.2. All experiments are implemented in Matlab

on a personal computer.

5.1 A Simple Example

We first consider a simple example with N statistically identical agents having the same job arrival

rates λi. Specifically, there are J = 3 types of jobs, with arrival rates λi = [7.5 5 2.5]T for each

agent i ∈ [N ] and departure rates θ = [1 1 1]T. Thus, on average, jobs arrive five times faster

than they depart. Jobs can form K = 5 different types of matchings. The matching rewards are
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r = [1 1 1 2 4]T, and the matching matrix is given by

M =


2 0 0 1 1

0 2 0 1 1

0 0 2 0 1

 .

Specifically, each of the first three matching types requires two jobs of the same type and provides

a reward of 1. The fourth matching type requires one job of type one and one job of type two and

leads to a reward of 2. Finally, the fifth matching type requires one job from each type and yields

the highest reward of 4.

Intuitively, without job departures, it is preferable to perform the fourth and final matchings

and match the remaining type-one jobs with each other. This is because each job generates a higher

reward from participating in the last two matching types than from matching within its own type.

Notably, the fluid relaxation (1), which disregards job expiration, has a unique optimal solution,

x̄ = [1.25 0 0 2.5 2.5]T, and this solution is non-degenerate because all basic variables are positive.

In the original problem, however, job expirations introduce a trade-off: each agent must decide

whether to wait for jobs to form a more desired match with the risk that on-hand jobs may expire.

Therefore, although our example setup is simple, it captures the key trade-off agents face.

Numerical Results Suppose agents two to N submit all their jobs to the shared pool. We compare

the long-run average payoff of agent one from doing the same to the optimal value of (3), which

serves as an upper bound on agent one’s payoff under any strategy, even when she holds complete

information about the system (Lemma 4.4).

Specifically, we take ∆ = 1
2 · N− 1

2 for the periodic matching policy πP based on Lemma 3.3,

and number of agents N increasing linearly from 20 to 200 with a step size of 20. We present

our numerical results in Figure 1. Figure 1(a) illustrates the long-run average payoff of agent one

from full submission alongside the corresponding fluid upper bound (3). As the number of agents

increases, the payoff that agent one obtains from full submission converges to her fluid relaxation

upper bound, consistent with the theoretical result (Lemmas 4.4 and 4.5). Figure 1(b) illustrates

the relative suboptimal gap
(
= fluid relaxation (3)−payoff from full submission

payoff from full submission

)
. As the number of agents

increases, the sub-optimality of full submission decreases fast. In particular, the sub-optimality gap

is smaller than 5% when there are 40 agents (4.78%) and drops below 2% when there are 180 agents

(1.99%). Note that the sub-optimality gap we evaluate is conservative in that the fluid relaxation

(3) for an agent might be a bit loose when the number of agents N is small. This is because, with
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Figure 1: Simulation results for the simple example.

fewer agents, the shared pool is less congested, and the probability of an over-demanded job being

matched is lower. In contrast, in the fluid relaxation (3), an over-demanded job always secures the

expected payoff from matching when submitted to the shared pool. Despite this, our numerical

results indicate that an agent has a limited ability to strategize when all other servers submit fully

and the number of agents is not very small.

5.2 A Kidney Exchange Example

In this section, we consider a more realistic multi-hospital kidney exchange example based on

real data. In this example, jobs represent incompatible patient-donor pairs, and agents represent

hospitals that can perform kidney exchanges. We restrict attention to bilateral exchanges.

An exchange between two patient-donor pairs can occur if each patient is both blood-type

(ABO) compatible and tissue-type compatible with the other pair’s donor. ABO compatibility

requires that a patient cannot receive a kidney from a donor who has a blood antigen (A or B)

that the patient does not have. Figure 2 (provided in Ashlagi and Roth 2021) illustrates the ABO

compatibility structure. In addition to ABO compatibility, the patient must also be tissue-type

compatible with the donor, meaning that the patient cannot have antibodies against the donor’s

human leukocyte antigens. A commonly used measure of a patient’s difficulty in finding a tissue-

type compatible donor, among those who are ABO compatible, is the panel-reactive antibody

(PRA). PRA quantifies the likelihood that a patient is tissue-type incompatible with a random
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donor in the population based on the patient’s antibodies. Patients with a high PRA are more

likely to have difficulty finding a tissue-type compatible donor. For further details, see Section 2 of

Ashlagi and Roth (2021).

O

AB

A B

Figure 2: Illustration of ABO compatibility (Figure 1 of Ashlagi and Roth 2021). A directed arc of X to Y
means that a donor with blood type X is compatible with a recipient with blood type Y.

Parameter Setup For simplicity, we assume that all hospitals are statistically identical and, there-

fore, have the same arrival rates of patient-donor pairs. We set the total arrival rate at each hospital

to be one patient-donor pair every two weeks, or approximately 26 pairs per year.

Patient-donor pairs are classified based on the patient’s and donor’s blood types and the pa-

tient’s PRA score. For example, an (A–B, 65) patient-donor pair consists of a donor with blood

type B and a patient with blood type A and a PRA score of 65 (indicating a 0.65 probability of

incompatibility with an ABO-compatible donor).

To determine the frequency of different patient-donor types, we use statistics about the APKD

(a major U.S. kidney exchange program) historical pool composition from 2010 to 2019, as provided

in Table A.1 of Ashlagi and Roth (2021) and reproduced in Table 1 below. Table 1 categorizes

the PRA scores into 7 intervals. Consequently, we set the total number of pair types to be the 16

ABO blood type combinations multiplied by the 7 PRA intervals, resulting in 112 types. For each

PRA interval, we use the median value as the representative PRA score.6 In Table 1, the second

column presents the empirical distribution of the patient-donor ABO pairs, and columns three to

nine present the frequencies of PRA intervals, conditional on each ABO pair. As a result, the

arrival rate for each type can be calculated by multiplying the total arrival rate by the percentage

of the corresponding ABO pair and the conditional PRA frequency.

Finally, following the empirical setup in Ashlagi et al. (2023), we assume an average waiting time

6The seven intervals are [0, 1], [1, 10], [10, 50], [50, 80], [80, 95], [95, 99], and [99, 100], and their median values are
0.5, 5.5, 30, 65, 87.5, 97, and 99.5, respectively.
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of 360 days, or an expiration rate of 1/360 per day, for any pair type.7 We consider each hospital’s

objective to be maximizing the expected number of exchanges. Therefore, two pairs can be matched

only if they are ABO compatible, and the expected payoff from matching is the probability of tissue-

type compatibility, which is (1− PRA of the first patient)× (1− PRA of the second patient).

Marginal frequencies (PRA intervals)

Patient–donor ABO % of pairs 0− 1 1− 10 10− 50 50− 80 80− 95 95− 99 99− 100

AB–AB 0.2 0.0 0.0 0.0 50.0 0.0 25.0 25.0

AB–B 0.4 0.0 0.0 0.0 16.7 16.7 0.0 66.7

AB–A 0.7 0.0 8.3 0.0 8.3 50.0 0.0 33.3

AB–O 0.6 10.0 0.0 20.0 10.0 0.0 20.0 40.0

B–AB 0.9 37.5 6.2 18.8 6.2 12.5 0.0 18.8

B–B 2.4 0.0 4.9 12.2 12.2 31.7 9.8 29.3

B–A 5.8 46.5 8.1 13.1 9.1 12.1 1.0 10.1

B–O 4.2 9.9 1.4 4.2 16.9 19.7 15.5 32.4

A–AB 1.0 41.2 5.9 5.9 11.8 17.6 0.0 17.6

A–B 3.6 30.6 9.7 6.5 14.5 9.7 1.6 27.4

A–A 9.7 4.2 1.8 16.9 19.3 18.1 10.8 28.9

A–O 8.8 12.7 4.7 9.3 19.3 15.3 18.0 20.7

O–AB 2.3 46.2 10.3 23.1 5.1 12.8 0.0 2.6

O–B 9.2 47.1 10.8 14.0 7.6 8.3 4.5 7.6

O–A 29.4 49.9 10.0 12.8 8.8 6.4 3.6 8.6

O–O 20.7 4.5 2.8 13.9 17.3 23.9 16.2 21.3

Table 1: APKD pool composition (2010-2019) (Table A.1 of Ashlagi and Roth 2021).

Numerical Results We again assume that hospitals two to N submit all their jobs to the shared

pool, and compare the long-run average payoff of hospital one from full submission to the fluid

upper bound (3). In the simulation, we vary the number of hospitals N linearly from 50 to 500

with a step size of 50, and set the matching interval length ∆ in the periodic matching policy πP

to be ∆ ∈ {1, 2, 4, 7, 30}, corresponding to 1 day, 2 days, 4 days, 1 week, and 1 month, respectively.

Our numerical results are presented in Figure 3. Figure 3(a) illustrates the long-run average payoff

of hospital one from full submission under the non-monetary mechanism for different matching

interval lengths, and Figure 3(b) illustrates the relative suboptimal gap. From Figure 3(b), even

with only 50 hospitals participating in the kidney exchange program, the suboptimal gap of full

submission remains around 5% (specifically, 5.17% when ∆ = 7) assuming all other hospitals fully

submit their patient-donor pairs. The suboptimal gap drops further to 2% when 250 hospitals

7See footnote 27 in Section 5 of Ashlagi et al. (2023).
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Figure 3: Simulation results for the kidney exchange example.

participate (1.95% when ∆ = 4). It is worth noting that there are currently 256 kidney transplant

centers in the U.S. (Wang and Hart 2021). When there are 250 or more hospitals, shorter matching

periods (e.g., daily or every few days) outperform less frequent matching (e.g., monthly), which

aligns with current practices in the U.S. (Section 2.3 of Ashlagi and Roth 2021).

6 Conclusions

Motivated by applications in multi-hospital kidney exchanges and collaboration among intermedi-

aries in other matching markets, we studied the problem of incentivizing participation among N

strategic agents, each managing a local multi-way matching problem. We focus on a limited infor-

mation setup, where an agent’s job arrivals and actions are unobservable to others, and the designer

knows only the aggregate job arrival rates and matching rewards. As our main contribution, we

develop a simple non-monetary mechanism (Definition 4.1) that (i) implements an asymptotically

optimal matching algorithm at the shared pool, and (ii) properly distributes matching rewards

through a well-designed random matching allocation. We demonstrate that this mechanism in-

centivizes all agents to fully submit their jobs when the number of agents is large. Consequently,

the shared pool effectively operates in a centralized setting, achieving the same dynamics and per-

formance as under centralized control. Numerical experiments based on synthetic examples and

kidney exchange data demonstrate that full submission is approximately an equilibrium within

our mechanism in practical settings. Ongoing work involves extending our mechanism further to
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more general settings, such as when agents have heterogeneous matching rewards or hold private

information about those rewards.
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Ross, S. M. and E. A. Peköz (2023). A Second Course in Probability (2 ed.). Cambridge University
Press.
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A Proofs

A.1 Proof of Lemma 3.1

Recall that

V ∗ = max
π∈Π

lim inf
t→∞

1

t
V π(t), where V π(t) = E

 ∑
m∈[K]

rmNπ
m(t)

 ,

and Π denotes the set of all feasible policies.
For any feasible policy π ∈ Π, the number of type-j jobs that have been matched by time t is∑

m∈[K]MjmNπ
m(t), which must be less than Xj(0) +Dj(t), the number of type-j jobs that have

arrived by time t. Therefore, for any sample path, the total matching rewards by time t under a
policy π is bounded from above by the following:

V (t)[X(0) +D(t)] ≜ max
x∈NK

rTx

s.t. Mx ≤ X(0) +D(t).
(5)

Let x[X(0) +D(t)] denote an optimal solution to (5); it holds that

ME
[
x[X(0) +D(t)]

]
≤ X(0) + E [D(t)] = X(0) +Nλt.

Therefore, E [x[X(0) +D(t)]] is feasible to the problem of V F(X(0) +Nλt), and it follows that

V π(t) ≤ E [V (t)[X(0) +D(t)]] ≤ V F(X(0) +Nλt).

According to the definition of V F(λ) and its dual problem (2), the function V F(λ) is concave and
piecewise linear, and thus is continuous. As a result, we have

lim
t→∞

1

t
V F(X(0) +Nλt) = lim

t→∞
V F

(
Nλ+

1

t
X(0)

)
= V F(Nλ) = NV F(λ).

In conclusion, we have V ∗ ≤ V F(Nλ) = NV F(λ).

A.2 Proof of Lemma 3.2

A.2.1 Preparations

To start, we provide some useful lemmas as preparation for the proof of Lemma 3.2. First, Lemma
A.1 bounds the optimal dual variable p̄ from above.

Lemma A.1. Let p̄ = (p̄j)j∈[J ] be an optimal solution to (2). It follows that p̄j ≤ rmax for any
j ∈ [J ].

Proof. We prove by contradiction. Suppose, instead, that p̄j > rmax for some index j ∈ [J ]. If we
set p̄j = rmax while keeping all other components of p̄ unchanged, p̄ remains feasible to (2), and
this adjustment strictly improves the objective value, contradicting the optimality of p̄.

Second, Lemma A.2 shows that the function V F(λ) is Lipschitz continuous in λ.

Lemma A.2. For any two arrival rate vectors λ,λ′ ≥ 0, we have

V F(λ′)− V F(λ) ≤ rmax ·
∑
j∈[J ]

(
λ′
j − λj

)+
.
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Proof. By the strong duality, V F(λ) equals the optimal value of (2). Let p̄ = (p̄j)j∈[J ] denote an
optimal solution of (2). Therefore, we have V F(λ) = λTp̄. Moreover, Since p̄ satisfies MTp̄ ≥ r, it
holds that V F(λ′) ≤ λ′Tp̄ by weak duality. As a result, we have:

V F(λ′)− V F(λ) ≤
∑
j∈[J ]

p̄j(λ
′
j − λj) ≤

∑
j∈[J ]

p̄j
(
λ′
j − λj

)+ ≤ rmax ·
∑
j∈[J ]

(
λ′
j − λj

)+
,

where the last inequality follows from Lemma A.1.

Finally, Lemma A.3 shows that the number of jobs that arrive within a time interval and remain
till the end of the interval follows a specific Poisson distribution.

Lemma A.3. For any time interval of length ∆, let Zj denote the number of type-j jobs that
arrive within the time interval and remain till the end of the interval. Then, Zj follows a Poisson

distribution with a mean value of
Nλj

θj
(1− exp (−θj∆)).

Proof. Without loss of generality, we consider the time interval (0,∆]. We first compute the ex-ante
probability Pj(∆) that a type-j job which arrived during (0,∆] is still in the system at time ∆.
Note that a type-j job will still be in the system if and only if its arrival time + waiting time > ∆.
Therefore, it holds that

Pj(∆) = P (arrival time + waiting time > ∆) = P (waiting time > ∆− arrival time)

=
1

∆

∫ ∆

0
P (waiting time > x) dx =

1

∆

∫ ∆

0
exp (−θjx) dx

=
1

∆θj
(1− exp (−θj∆)) ,

where the third equality follows from the fact that the arrival time is uniformly distributed over
(0,∆], conditional on the job arriving within this time interval. (see Section 2.3 of Ross 1995).

Let Dj(∆) denote the number of type-j jobs that have arrived by time ∆, which follows a
Poisson distribution with a mean value of ∆Nλj . Since each of the Dj(∆) jobs remains in the
system at time ∆ with a probability of Pj(∆), Zj follows a Poisson distribution with a mean value
of

∆Nλj · Pj(∆) =
Nλj

θj

(
1− exp (−θj∆)

)
.

A.2.2 Proof of Lemma 3.2

Consider a time interval of length ∆. Let Zj denote the number of type-j jobs that arrive within
the time interval and remain till the end of the interval. According to Lemma A.3, we have that

Zj ∼ Poisson
(
Nλj

θj
(1− exp (−θj∆))

)
.

Let Z = (Zj)j∈[J ] ∈ RJ
+ be the concatenation of job arrivals, V P(∆) the expected payoff of the

periodic matching policy πP in a period of length ∆, and X ∈ NJ the number of jobs in the system
by the end of the time interval and before matches are conducted. It holds that X ≥ Z for any
sample path, because there could be jobs that arrived before the time interval and still remain in
the system. By the definition of policy πP, we solve the fluid relaxation V F(X), obtain an optimal
solution x∗ ∈ RK

+ , and perform ⌊x∗m⌋ type-m matchings for every m ∈ M+.

27



We first bound the rounding error. Note that:∑
m∈M+

rm⌊x∗m⌋ ≥
∑

m∈M+

rmx∗m −min
{
K,J

}
· rmax ,

where the inequality follows from the fact that the fluid relaxation (1) has at most min{K,J} basic
variables. Therefore, the following holds:

V P(∆) ≥ V F(X)−min {K,J} · rmax ≥ V F(Z)−min {K,J} · rmax , (6)

where the second inequality follows from the fact that X ≥ Z for every sample path. Consequently,

V F(∆Nλ)− E[V P(∆)] ≤ V F(∆Nλ)− E[V F(Z)] + min {K,J} · rmax

≤ rmax ·
∑
j∈[J ]

E
(
∆Nλj − Zj

)+
+min {K,J} · rmax

≤ rmax ·
∑
j∈[J ]

{
E
(
∆Nλj − E [Zj ]

)+
+ E

(
E [Zj ]− Zj

)+
}
+min {K,J} · rmax

≤ rmax ·
∑
j∈[J ]

{
1

2
θjNλj∆

2 +
√

Nλj∆

}
+min {K,J} · rmax.

where the first inequality follows from (6), the second inequality from Lemma A.2, and the fourth
inequality from the facts that

E [Zj ] = Nλj

∫ ∆

0
exp (−θjx) dx ≥ Nλj

∫ ∆

0
(1− θjx) dx = Nλj∆

(
1− 1

2
θj∆

)
, (7)

and that

E
(
E [Zj ]− Zj

)+
≤ E

∣∣∣E [Zj ]− Zj

∣∣∣ ≤ [
E
(
E [Zj ]− Zj

)2
] 1

2

=
√
Var

(
Zj

)
=

√
Nλj

θj

(
1− exp (−θj∆)

)
≤

√
Nλj∆.

By taking ∆ = N− 1
3 , we have

NV F − V P

NV F
=

V F(∆Nλ)− E[V P(∆)]

V F(∆Nλ)

≤ rmax ·

∑
j∈[J ]

{√
Nλj∆+ 1

2θjNλj∆
2
}
+min {K,J}

∆N · V F

≤ rmax

V F
·
∑
j∈[J ]

(√
λj ·

1√
∆N

+
λjθj
2

·∆+
1

∆N

)

≤ rmax

V F
·
∑
j∈[J ]

(√
λj +

λjθj
2

+ 1

)
·N− 1

3 .
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A.3 Details of Remark 3.1

Proof of Bullet One We note that function V F(λ) is piecewise linear and concave in λ, and that
p̄ ∈ RJ

+ is an optimal dual variable of V F(λ) if and only if it is a subgradient of V F(·) at the point
λ (see Sections 5.2 and 5.3 of Bertsimas and Tsitsiklis 1997). Therefore, p̄ is the unique optimal
dual solution if and only if λ is not a kink of the function V F(·), and since V F(λ) is piecewise linear,
this condition holds if and only if p̄ is the unique optimal dual solution in the neighborhood of λ.

Proof of Bullet Two Let (8) be the standard form of the fluid relaxation (1) by introducing the
slack variable s ∈ RJ

+.

V F(λ) = max
x∈RK

+ ,s∈RJ
+

rTx

s.t. Mx+ s = λ.
(8)

We show that x ∈ RK is a non-degenerate basic feasible solution of (1) if and only of x together
with s = λ −Mx is a non-degenerate basic feasible solution of (8). For a matrix M ∈ RJ×K and
subsets A ⊆ [J ] and B ⊆ [K], let MA,B denote a sub-matrix of M containing only the rows in set
A and columns in set B. Additionally, for a feasible solution x to (1), define I ≜ {i ∈ [K] : xi = 0}
and H ≜ {j ∈ [J ] : mT

j x = λj}, where mT
j represents the j-th row of the matching matrix M. On

one hand, x is a non-degenerate basic feasible solution of (1) if and only if x is feasible to (1) and
the following conditions hold:

|I|+ |H| = K,

The sub-matrix MH, [K]\I has full rank.
(9)

On the other hand, x together with s = λ − Mx is a non-degenerate basic solution of (8) if and
only if x is feasible to (1) and the following conditions hold:

|I|+ |H| = K,

The matrix
(
M[J ], [K]\I , I[J ], [J ]\[H]

)
has full rank,

(10)

where I[J ], [J ]\[H] is a sub-matrix of the J ×J identity matrix. Since
(
M[J ], [K]\I , I[J ], [J ]\[H]

)
has full

rank if and only if MH, [K]\I has full rank, (9) and (10) are equivalent.
Note that (2) is also the dual of (8). Therefore, if (1) has a non-degenerate optimal basic feasible

solution, so does (8), and this implies that (2) has a unique optimal solution according to Bertsimas
and Tsitsiklis (1997) (see, for example, the discussion following Example 4.6 or preceding Theorem
5.1).

A.4 Proof of Lemma 3.3

Let p̄ be the unique optimal dual variable of V F(λ̂) for any λ̂ such that ||λ̂− λ||∞ ≤ δ. We have:

V F(λ̂) = λ̂
T
p̄, ∀ λ̂ such that ||λ̂− λ||∞ ≤ δ. (11)

Analogous to Appendix A.2, we focus on a time interval of length ∆ and define random variable
Zj to be the number of type-j jobs that arrive within the time interval and remain till the end of

the interval, which follows a Poisson distribution with a mean value of
Nλj

θj
(1− exp (−θj∆)) by
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Lemma A.3. Note that the following holds:

(1− θj∆)∆Nλj ≤
(
1− 1

2
θj∆

)
∆Nλj ≤

Nλj

θj

(
1− exp (−θj∆)

)
≤ ∆Nλj ,

where the second inequality follows from (7) and the third inequality follows from the fact that
ex ≥ 1 + x for any x ∈ R. We can construct two Poisson random variables Z̄j ∼ Poisson (∆Nλj)
and Zj ∼ Poisson ((1− θj∆)∆Nλj), such that with proper coupling,

Zj ≤ Zj ≤ Z̄j

holds for every sample path.

A.4.1 Proof of Bullet One

Within a time interval of length ∆, the expected payoff of the periodic matching policy V P(∆) is at
least V F(Z)−min {K,J} rmax according to (6), and the payoff of the fluid relaxation is V F(∆Nλ).

Take the interval length to be ∆ = N− 1
2 , and define the following events:

B̄j =
{
Zj > ⌊∆N(λj + δ)⌋

}
, ∀ j ∈ [J ],

Bj =
{
Zj < ⌈∆N(λj − δ)⌉

}
, ∀ j ∈ [J ],

A =
(
∪j∈[J ]

(
B̄j ∪Bj

))c ⊆ {
||Z−∆Nλ||∞ ≤ ∆Nδ

}
.

By the concentration inequality for Poisson random variables (Lemma A.6), there exists positive
constants c1, c2 > 0, such that the following hold:

P
(
B̄j

)
≤ P

(
Z̄j ≥ ⌊∆N(λj + δ)⌋

)
≤ c1 · exp

(
−c2 ·N

1
2

)
,

P
(
Bj

)
≤ P

(
Zj ≤ ⌈∆N(λj − δ)⌉

)
≤ c1 · exp

(
−c2 ·N

1
2

)
.

(12)

In the first line, the first inequality follows from the fact that Zj ≤ Z̄j , and the second inequality

from taking ∆ = N− 1
2 and Lemma A.6. The second line can be justified analogously.

Using the union bound, we obtain:

P (Ac) ≤
∑
j∈[J ]

(
P
(
B̄j

)
+ P

(
Bj

))
≤ 2Jc1 · exp

(
−c2 ·N

1
2

)
. (13)

In addition, we have || Z
∆N − λ||∞ ≤ δ conditioning on event A. Therefore, from (11) we have:

V F(∆Nλ)− V F(Z) ≤ 1[A] · p̄T · (∆Nλ− Z) + 1[Ac] · V F(∆Nλ).

Consequently,

NV F − V P

NV F
=

V F(∆Nλ)− E[V P(∆)]

V F(∆Nλ)

≤
V F(∆Nλ)− E

[
V F(Z)

]
+min {K,J} · rmax

V F(∆Nλ)

≤ E [1[A] · p̄T · (∆Nλ− Z)] + min {K,J} · rmax

∆N · V F
+ P (Ac) ,

(14)
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where the first inequality follows from (6). Lemma A.4 serves as preparation to bound the first
term in (14) from above.

Lemma A.4. For any job type j ∈ [J ], we have the following:

E[1[A] · Zj ] ≥ ∆Nλj · (1− θj∆)−∆N ·
(
λj + 2J(λj + δ)

)
· c1 · exp

(
−c2 ·N

1
2

)
.

Proof. First, note that:

E[1[A] · Zj ] = E[Zj ]− E[1[Ac] · Zj ] ≥ ∆Nλj ·
(
1− θj∆

)
− E[1[Ac] · Zj ],

where the inequality follows from Zj ≥ Zj , and hence E[Zj ] ≥ E
[
Zj

]
= ∆Nλj · (1− θj∆).

We now bound the second term from above, as follows:

E[1[Ac] · Zj ] = E
[
1[Ac ∩ B̄j ] · Zj

]
+ E

[
1[Ac ∩ B̄c

j ] · Zj

]
≤ E[1[B̄j ] · Zj ] + P[Ac ∩ B̄c

j ] ·∆N
(
λj + δ

)
≤ E

[
1
[
Z̄j > ⌊∆N(λj + δ)⌋

]
· Z̄j

]
+ P[Ac] ·∆N

(
λj + δ

)
≤ ∆Nλj · P

(
Z̄j ≥ ⌊∆N(λj + δ)⌋

)
+ 2J ·∆N

(
λj + δ

)
· c1 · exp

(
−c2 ·N

1
2

)
≤ ∆N ·

(
λj + 2J(λj + δ)

)
· c1 · exp

(
−c2 ·N

1
2

)
,

where the first inequality follows from the facts that B̄j ⊆ Ac and that Zj ≤ ∆N(λj+δ) conditional
on event B̄c

j , the second inequality from Zj ≤ Z̄j , the third inequality from (13) and Lemma A.7,
and the fourth inequality from (12).

From Lemma A.4, we have the following:

E
[
1[A] · p̄T · (∆Nλ− Z)

]
≤

∑
j∈[J ]

p̄j ·
(
∆Nλj − E

[
1[A] · Zj

])
≤ rmax ·

∑
j∈[J ]

(
∆Nλj · θj∆+∆N ·

(
λj + 2J(λj + δ)

)
· c1 · exp

(
−c2 ·N

1
2

))
,

(15)

where the second inequality follows from Lemma A.4 and the fact that p̄j ≤ rmax for any j ∈ [J ]
(Lemma A.1). Combining (13) – (15), we obtain:

NV F − V P

NV F
≤

V F(∆Nλ)− E
[
V F(Z)

]
+min {K,J} · rmax

V F(∆Nλ)

≤ rmax

V F
·
∑
j∈[J ]

(
λjθj∆+

1

∆N
+
(
λj + 2J(λj + δ)

)
· c1 · exp

(
−c2 ·N

1
2

))
+ 2Jc1 · exp

(
−c2 ·N

1
2

)
= O

(
N− 1

2

)
by using ∆ = N− 1

2 .

A.4.2 Proof of Bullet Two

Assume that the matching matrix M is totally unimodular. Then, the optimal solution to the
matching problem solved at any time point k∆ is always integral. Therefore, rounding is not
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needed to perform the matching, and we have the following:

V P(∆) = V F(X) ≥ V F(Z), (16)

following the same notation as in (6).
Define a constant c ≜ maxj∈[J ]

(
1

λjg(δ/λj)
∨ 2

λjg(−δ/λj)

)
, where g(u) ≜ (1+u) ln(1+u)−u ≥ 0 is

defined in Lemma A.6. Note that g(0) = 0 and g(u) > 0 for any u ̸= 0. Take the interval length to
be ∆ = 2c · lnN

N . Moreover, assume that N is sufficiently large so that: (i) ∆ ≤ minj∈[J ]
δ

λjθj
and

(ii) 1
2 · g(−δ/λj) ≤ (1− θj∆) · g

(
λjθj∆−δ
λj(1−θj∆)

)
for all j ∈ [J ]. Finally, define the following events:

B̄j =
{
Zj > ∆N(λj + δ)

}
, ∀ j ∈ [J ],

Bj =
{
Zj < ∆N(λj − δ)

}
, ∀ j ∈ [J ],

A =
(
∪j∈[J ]

(
B̄j ∪Bj

))c
=

{
||Z−∆Nλ||∞ ≤ ∆Nδ

}
.

By the concentration inequality for Poisson random variables (Lemma A.6), we have:

P
(
B̄j

)
≤ P

(
Z̄j ≥ ∆N(λj + δ)

)
≤ exp

(
−∆Nλj · g

(
δ/λj

))
≤ 1

N2
,

P
(
Bj

)
≤ P

(
Zj ≤ ∆N(λj − δ)

)
≤ exp

(
−∆Nλj · (1− θj∆) · g

(
λjθj∆− δ

λj(1− θj∆)

))
≤ 1

N2
.

In the first line, the first inequality follows from the fact that Zj ≤ Z̄j , the second inequality from
Lemma A.6, and the third inequality from the definitions of the interval length ∆ and constant c.
Analogously, in the second line, the first inequality follows from the fact that Zj ≤ Zj , the second
inequality from Lemma A.6, and the third inequality from the definitions of the interval length ∆
and constant c and the aforementioned properties of ∆ given that N is sufficiently large.

Using the union bound, we obtain:

P (Ac) ≤
∑
j∈[J ]

(
P
(
B̄j

)
+ P

(
Bj

))
≤ 2J

N2
. (17)

In addition, we have || Z
∆N − λ||∞ ≤ δ conditioning on event A. Therefore, from (11) we get:

V F(∆Nλ)− V F(Z) ≤ 1[A] · p̄T · (∆Nλ− Z) + 1[Ac] · V F(∆Nλ).

Consequently,

NV F − V P

NV F
=

V F(∆Nλ)− E[V P(∆)]

V F(∆Nλ)

≤
V F(∆Nλ)− E

[
V F(Z)

]
V F(∆Nλ)

≤ E [1[A] · p̄T · (∆Nλ− Z)]

∆N · V F
+ P (Ac) ,

(18)

where the first inequality follows from (16). Analogous to Lemma A.4, Lemma A.5 helps bound
the first term in (18) from above.
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Lemma A.5. For any job type j ∈ [J ], we have the following:

E[1[A] · Zj ] ≥ ∆Nλj · (1− θj∆)−∆λj − 2J · (λj + δ) · ∆
N

when N is larger than a certain constant.

Proof. First, note that:

E[1[A] · Zj ] = E[Zj ]− E[1[Ac] · Zj ] ≥ ∆Nλj ·
(
1− θj∆

)
− E[1[Ac] · Zj ],

where the inequality follows from Zj ≥ Zj , and hence E[Zj ] ≥ E
[
Zj

]
= ∆Nλj · (1− θj∆).

We now bound the second term from above, as follows:

E[1[Ac] · Zj ] = E
[
1[Ac ∩ B̄j ] · Zj

]
+ E

[
1[Ac ∩ B̄c

j ] · Zj

]
≤ E[1[B̄j ] · Zj ] + P[Ac ∩ B̄c

j ] ·∆N
(
λj + δ

)
≤ E

[
1[Z̄j > ∆N(λj + δ)] · Z̄j

]
+ P[Ac] ·∆N

(
λj + δ

)
≤ ∆Nλj · P

[
Z̄j ≥ ⌊∆N(λj + δ)⌋

]
+ 2J ·

(
λj + δ

)
· ∆
N

≤ ∆λj + 2J ·
(
λj + δ

)
· ∆
N

.

In the above, the first inequality holds because B̄j ⊆ Ac and Zj ≤ ∆N(λj + δ) conditional on
the event B̄c

j . The second inequality follows from the fact that Zj ≤ Z̄j . The third inequality

follows from (17) and Lemma A.7. Finally, let δ̃ be a positive constant satisfying that δ̃ < δ and
that c ≥ maxj∈[J ]

1
2·λjg(δ̃/λj)

. Such a constant δ̃ exists by the definition of c. The fourth inequality

follows from the fact that ∆N(λj + δ̃) ≤ ⌊∆N(λj + δ)⌋ when N is sufficiently large (specifically,
when ∆N ≥ 1/(δ − δ̃)) and that

P
(
Z̄j ≥ ∆N(λj + δ̃)

)
≤ exp

(
−∆Nλj · g

(
δ̃/λj

))
≤ 1

N

by the definition of δ̃ and Lemma A.6.

From Lemma A.5, we have the following:

E
[
1[A] · p̄T · (∆Nλ− Z)

]
≤

∑
j∈[J ]

p̄j ·
(
∆Nλj − E

[
1[A] · Zj

])
≤ rmax ·

∑
j∈[J ]

(
∆Nλj · θj∆+∆λj + 2J · (λj + δ) · ∆

N

)
,

(19)

where the second inequality follows from Lemma A.5 and the fact that p̄j ≤ rmax for any j ∈ [J ]
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(Lemma A.1). Combining (17) - (19), we obtain:

NV F − V P

NV F
≤

V F(∆Nλ)− E
[
V F(Z)

]
V F(∆Nλ)

≤ rmax

V F
·
∑
j∈[J ]

(
λjθj∆+

λj

N
+ 2J · (λj + δ) · 1

N2

)
+

2J

N2

= O

(
lnN

N

)
by using ∆ = Θ

(
lnN
N

)
.

Lemma A.6 (Concentration Inequality for Poisson Random Variables). Let X ∼ Poisson(λ) be a
Poisson random variable with a mean value of λ > 0. We have

P(X ≥ λ(1 + u)) ≤ exp(−λg(u))

for any u ≥ 0, and
P(X ≤ λ(1− u)) ≤ exp(−λg(−u))

for any 0 ≤ u < 1, where g(u) = (1 + u) ln(1 + u)− u.

Proof. We first prove the first inequality. For any t ≥ 0, we have

P(X ≥ λ(1 + u)) = P
[
exp(tX) ≥ exp(tλ(1 + u))

]
≤ E

[
exp(tX)

]
exp(−tλ(1 + u))

= exp
(
λ(et − 1)− tλ(1 + u)

)
where the inequality follows from Markov’s inequality and the second equality from the moment
generating function of the Poisson distribution. It turns out that the right-hand side of the second
equality is minimized by setting t = ln(1 + u), in which case the right-hand side simplifies to
exp(−λg(u)). The second inequality can be proven similarly.

Lemma A.7. Let X ∼ Poisson(λ) be a Poisson random variable with a mean value of λ > 0 and
z ∈ N be a nonnegative integer. The following holds:

E [X · 1[X > z]] =

∞∑
k=z+1

k · λ
ke−λ

k!
= λ ·

∞∑
k=z

λke−λ

k!
= λ · P(X ≥ z).

A.5 Proof of Lemma 3.4

Let xP
m represent the long-run average matching rate of match m under policy πP, and let xP =

(xP
m)m∈[K] ∈ RK

+ . It follows that MxP ≤ Nλ because the rate of jobs matched must be less than

the rate of job arrivals. Therefore, xP

N is an optimal solution to the following LP (20):

max
x∈RK

+

rTx

s.t. Mx ≤ λ,

rTx ≤ rTxP

N
,

(20)
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because xP

N is feasible and obtains the highest possible objective value. On the other hand, since
the optimal value of the fluid relaxation (1) is V F, a solution is optimal to (1) if and only if it is
optimal to the following LP (21):

max
x∈RK

+

rTx

s.t. Mx ≤ λ,

rTx ≤ V F.

(21)

By Lipschitz continuity of optimal solutions of LPs with respect to constraints’ right-hand side
(i.e., Lemma A.8 below), there exists an optimal solution x̄ to the fluid relaxation (1) such that∥∥∥∥xP

N
− x̄

∥∥∥∥
∞

≤ C4

∣∣∣∣V F − rTxP

N

∣∣∣∣ = C4 ·
NV F − V P

N
.

for some constant C4 > 0. The rest of Lemma 3.4 follows from the fact that policy πP is asymp-
totically optimal (i.e., Lemmas 3.2 and 3.3 hold).

Lemma A.8 (Theorem 2.4 of Mangasarian and Shiau 1987). Consider the following LP:

P (b) = max {rTx : Ax ≤ b} .

There exists a constant κ such that, for any vectors b, b̂ ∈ Rn
+ and any optimal solution x to P (b),

there exists an optimal solution x̂ to P (b̂) such that ∥x− x̂∥∞ ≤ κ∥b− b̂∥∞.

A.6 Proof of Corollary 3.5

LetNm(t) denote the number of type-mmatches completed by time t; we haveDjm(t) = MjmNm(t).
Therefore, the following holds:

E
[
lim
t→∞

Djm(t)

Dj(t)

]
= E

[
lim
t→∞

Djm(t)

t

t

Dj(t)

]
=

Mjm

Nλj
· E

[
lim
t→∞

Nm(t)

t

]
=

Mjm

Nλj
· lim
t→∞

E
[
Nm(t)

t

]
,

where the second equality follows from Djm(t) = MjmNm(t) and the fact that limt→∞Dj(t)/t =
Nλj almost surely by the strong law for renewal processes (Proposition 6.2 in Ross and Peköz 2023),
and the third equality follows from the generalized dominated convergence theorem (Theorem 19 in

Royden and Fitzpatrick 2010) because Nm(t) ≤ Dj′(t) and limt→∞ E
[
Dj′ (t)

t

]
= E

[
limt→∞

Dj′ (t)

t

]
,

where j′ represents a job type included in match m.
This equality, together with Lemma 3.4, yields Corollary 3.5 by setting C6 ≜ C4·maxj∈[J ],m∈[K]

Mjm

λj
.

A.7 Proof of Proposition 4.3

Let xm denote the long-run average rate at which agent i performs match m locally, and sj denote
the rate of submitting type-j jobs to the shared pool; we have x = (xm) and s = (sj) are feasible
to (3). We will show that if xm > 0 for some type-m match—that is, the agent performs some
matches locally—the long-run average payoff is strictly less than λT

i p̄ and is therefore suboptimal
by Proposition 4.2.

Assume xm > 0 for some m ∈ [K]. Since the jobs’ interarrival and sojourn time follow exponen-
tial distributions, by the memoryless property, it is optimal for the agent to perform match m only
when its component jobs arrive. We apply the approach of Aouad and Sarıtaç (2022) to bound the
expiration rate of some over-demanded job type involved in match m from below. Specifically, since
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a match requires two or more jobs and, at any time, at most one job arrives due to Poisson arrival
processes, there exist two component job types j and j′ for match m, such that the followings hold:
(i) match m requires at least one type-j job and one type-j′ job, (ii) with a certain probability,
match m is performed when a job of type j arrives (referred to as a passive job), which implies a
type-j′ job is actively waiting for the match (referred to as an active job), and (iii) job type j′ is
over-demanded; that is, p̄j′ > 0.8

Let xjm > 0 denote the rate of performing match m when a type-j job arrives, and let yj′ denote
the expiration rate of type-j′ jobs. Based on the proof of Lemma 1 from Aouad and Sarıtaç (2022),
the following inequality holds:

yj′ ≥
θj′

λj
· xjm.

Intuitively, an (active) type-j′ job expires before the next type-j job arrives with probability
θj′

λj+θj′
.

Therefore, type-j′ jobs expire and are wasted at a positive rate. Consequently, the long-run average
payoff for agent i is no greater than λT

i p̄ − yj′ p̄j′ , which is less than the payoff λT
i p̄ achieved by

submitting all jobs to the shared pool.

A.8 Proof of Lemma 4.5

Suppose all agents fully submit their jobs to the shared pool. Without loss of generality, assume
that neither the shared pool nor any agent holds any job at time zero. Let Nm(t) denote the
number of type-m matches formed by the shared pool by time t, xP

m ≜ limt→∞ E[Nm(t)]/t the
long-run average matching rate of match m at the shared pool, and Sijm(t) the number of type-j
jobs submitted by agent i that participate in match m by time t. We then have the following
equation:

E[Sijm(t)] =
λij

Nλj
·Mjm · E[Nm(t)], (22)

where λj =
∑

i∈[N ] λij/N denote the normalized aggregate arrival rate of type-j jobs. To interpret
(22), note that a total of MjmNm(t) type j jobs participate in match m by time t, and each of

these jobs comes from agent i with a probability of
λij

Nλj
.

Let x̄ = (x̄m)m∈[K] ∈ RK
+ be an optimal solution to (1). The long-run average payoff for agent

i, denoted by Vi, satisfies the following:

Vi = lim
t→∞

E

[∑
j∈[J ] p̄j ·

∑
m∈[K] Sijm(t)

t

]

=
∑
j∈[J ]

p̄j ·
λij

λj

∑
m∈[K]

Mjm · x
P
m

N

≥
∑
j∈[J ]

p̄j ·
λij

λj

∑
m∈[K]

Mjm ·
(
x̄m − C4 ·

NV F − V P

N

)

≥
∑
j∈[J ]

p̄j ·
λij

λj

∑
m∈[K]

Mjm · x̄m − C6 ·
NV F − V P

N

= λT
i p̄− C6 ·

NV F − V P

N
.

8We allows for j = j′, in which case match m requires at least two type-j jobs.
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In the above, the first line follows from the fact that every matched type-j job yields an expected
value of p̄j . The second line follows from (22) and the definition of xP

m. The third line follows
from Lemma 3.4. The fourth line follows from the definition of the constant C6, Lemma A.1, and
Assumption 2.1. Finally, the fifth line follows from the complimentary slackness condition of (1),
that is, p̄j · (mT

j x̄− λj) = 0 for all j ∈ [J ], where mT
j denotes the j-th row of matrix M.
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