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Abstract

We study an information design problem in which a school advisor strategically discloses
information to promote her student in a job market with n potential employers. The advisor
can send different signals to different employers (i.e., private persuasion) or broadcast the same
signal to all employers (i.e., public persuasion). After receiving the signals, the employers can
communicate with each other to reduce uncertainty about the candidate in their self-interest.
We demonstrate that as long as the candidate can accept at most one offer and has a known
preference among the employers, public persuasion is optimal, regardless of how employers
communicate. The optimal public persuasion can be derived from a first-best relaxation problem
that only imposes the employers’ participation constraints. We then focus on a specific case in
which the candidate’s characteristics can be summarized as a one-dimensional variable, and all
of the receivers’ utility functions are linear in this variable. We derive the optimal mechanism in
a closed form for the two-receiver case. In the general case, a convex optimization problem with
n decision variables and constraints can be efficiently solved to obtain an optimal mechanism.
We provide structural properties and a better understanding of the optimal mechanism from a
dual viewpoint.

Subject classifications: Bayesian persuasion, public information, multiple receivers, Lagrangian
dual



1 Introduction

In this paper, we study a Bayesian persuasion problem faced by a school advisor who promotes her

student in a job market with n potential employers (e.g., schools with open junior faculty positions).

The student has a known preference among the employers and can accept at most one offer. The

advisor holds private information about the student’s characteristics relevant to the employers’

hiring requirements (e.g., research potential, teaching experience, and communication skills, etc.).

The advisor can commit to an information disclosure mechanism that strategically discloses the

candidate’s characteristics (e.g., through targeted recommendation letters) to the employers to

maximize the candidate’s expected payoff. Notably, the advisor can use either a public persuasion

mechanism to share the same information with all employers or a private persuasion mechanism to

send tailored information to different employers based on their specific hiring standards.

A key feature of our model is the consideration of the subsequent communication among receivers

after receiving signals from the sender, which is common in practice. Specifically, employers may

communicate with each other (either simultaneously or sequentially, using either cheap talk or some

degree of commitment) to reduce uncertainty about the candidate in their self-interest. Then, based

on the signal received from the sender and the additional information from other receivers, each

employer decides whether to extend a job offer to the candidate. We note that the receivers

in this context are both cooperators and competitors. The communication reduces uncertainty

about the candidate’s characteristics, which benefits each receiver. However, since the sender can

accept only one offer, competition among the receivers arises. Particularly, if an employer knows

that a candidate is of high quality, he may withhold this information from other employers to avoid

competition, especially if the sender prefers other employers. Therefore, the potential for subsequent

communication among receivers substantially complicates the information design problem, making

it unclear what an optimal persuasion mechanism is.

As our first main result, we demonstrate that public persuasion is always optimal regardless of

the detailed communication protocol used by the receivers (Section 3).1 Since all the employers

receive the same information under a public persuasion mechanism, subsequent communication

cannot convey any payoff-related information and therefore becomes irrelevant. As a result, the

sender eliminates any room for the receivers to communicate and infer further about the candidate

for her own benefit.

1This is perhaps striking because the optimal persuasion mechanism differs among receivers when considering
each receiver in isolation. Moreover, public persuasion is optimal even when the sender knows that receivers cannot
communicate (but are aware of each other’s existence), as we elaborate further in Remark 4.3.

1



Furthermore, we show that the optimal public persuasion mechanism can be solved from a first-

best relaxation problem that imposes only employers’ participation constraints. Specifically, in the

first-best problem, a central planner allocates a candidate with characteristics w to employers.

An employer hires the candidate when the candidate is allocated to him. The first-best relaxation

problem solves the optimal randomized allocation to maximize the sender’s expected payoff ensuring

only a nonnegative expected utility for each employer. We show that an optimal public persuasion

mechanism can be derived from an optimal solution to the first-best relaxation problem, and its

expected payoff matches the first-best upper bound.

Although an optimal public persuasion mechanism can be solved from the aforementioned first-

best relaxation problem, it becomes an infinite-dimensional linear program (LP) when the candi-

date’s characteristics w are infinite, which is challenging to solve. As our second main result, we

then focus on the efficient computation of an optimal public persuasion mechanism for a specific

case in which the candidate’s characteristics w can be summarized as a one-dimensional variable,

and all of the receivers’ utility functions are linear in this variable (Section 4). We derive the

optimality conditions for a persuasion mechanism and provide structural properties and useful in-

terpretations of an optimal mechanism based on the Lagrangian dual of the first-best relaxation

problem, where we dualize the participation constraints (Section 4.2). In the Lagrangian, each

employer i is associated with a line passing through the point (αi, vi) with a nonnegative slope µi,

where αi represents the hiring bar of employer i,2 vi represents the payoff of employer i’s offer to

the candidate, and µi represents the dual variable associated with employer i’s participation con-

straint. The Lagrangian assigns a candidate with characteristics w to employer i with a positive

probability only if employer i’s line is above the x-axis and the other employers’ lines at point w.

Furthermore, a persuasion mechanism is optimal if and only if all of the receivers’ participation

constraints are binding and there exists a dual variable under which the mechanism is optimal to

the corresponding Lagrangian.

Based on the optimality conditions, we derive the optimal persuasion mechanism in closed form

when there are two employers, where one employer has a higher hiring bar but also brings a higher

payoff (Section 4.3). The main trade-off is that an offer from a more competitive employer brings

a higher payoff; however, targeting this employer more aggressively is costly because it reduces the

overall probability of receiving an offer. Depending on the relative desirability of the two employers

and their hiring bars, the optimal persuasion mechanism carefully balances this trade-off.

2That is, the utility of hiring a candidate is nonnegative for employer i if and only if the “quality” w exceeds αi.
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We then consider the general case with n employers (Section 4.4). We first show that the

first-best relaxation problem can be reduced to a convex optimization problem with n decision

variables and constraints, and thus can be efficiently solved. The convex problem maximizes the

sender’s expected payoff by optimally determining the ex-ante probability that the candidate joins

each employer, subject to a variant of the aforementioned participation constraint that ensures

the assignment of the candidate meets the hiring requirements of the top k employers for any

k ≤ n. This convex problem is analogous to the one considered in Candogan (2022) but is slightly

simplified. We establish the equivalence of the first-best relaxation problem and the convex problem

from both the primal and dual viewpoints, recover many of the results from Candogan (2022), and

offer new insights based on the dual of the convex problem. Given an optimal solution to the convex

program, we can construct an optimal persuasion mechanism in various ways. In addition to the

deterministic persuasion mechanism with a double-interval structure as illustrated in Candogan

(2022), we present a randomized persuasion mechanism with a monotone structure. Specifically,

under the randomized persuasion mechanism, the student’s payoff first-order stochastically increases

with her quality w. This monotone property ensures that candidates benefit from higher quality,

which is desirable in practice.

The rest of the paper is organized as follows. Section 1.1 reviews some related work. Section 2

formulates the problem. In Section 3, we demonstrate that public persuasion mechanisms are

optimal in our setup, regardless of the receivers’ communication method. In addition, the optimal

public persuasion mechanism can be solved from a first-best relaxation problem that requires only

the employers’ participation constraints. Section 4 addresses the efficient computation of an optimal

public persuasion mechanism when the candidate’s characteristics can be summarized as a one-

dimensional variable, and all receivers’ utility functions are linear in this variable. We provide

optimality conditions of a public persuasion mechanism based on duality in Section 4.2. Section 4.3

characterizes the optimal mechanism in closed form for the two-receiver case, and Section 4.4

examines the general case. Section 5 concludes.

1.1 Related Literature

Our work is related to the literature on Bayesian persuasion and information design. The seminal

paper Kamenica and Gentzkow (2011) examines the problem in which a designer (sender) with pri-

vate information tries to persuade an agent (receiver) to take a sender-preferred action. Subsequent

literature extends this framework to settings with multiple receivers (e.g., Alonso and Câmara 2016,

Arieli and Babichenko 2019, and Section 4.1 of Kamenica 2019 for a recent review). As Kamenica
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(2019) highlights, if sender can send separate signals to each receiver, and if either (a) a receiver’s

optimal action depends on what other receivers do or (b) sender’s utility is not separable across

receiver’s actions, then the problem becomes significantly more difficult. Our setup falls within this

challenging regime.

Many existing works have not incorporated post-signal communication among the receivers as

we do. Two exceptions are Galperti and Perego (2023) and Candogan et al. (2023), which consider

informational spillovers among receivers. In both works, these spillovers are pre-specified by a

directed network, in which arcs represent potential informational spillovers among the receivers. In

contrast, our model allows for strategic communication and an arbitrary communication method.

Galperti and Perego (2023) characterize the set of all possible equilibrium outcomes that can arise

from an information structure under spillover and seeding constraints. Candogan et al. (2023)

show that the optimal information design problem is generally computationally challenging under

information spillovers, except for some specific cases.

Candogan (2022) considers a general model in which the designer’s payoff is an increasing step

function of the induced posterior mean and solves a finite-dimensional convex optimization to obtain

an optimal public persuasion mechanism. While Candogan (2022) focuses on public persuasion

mechanisms, we show that these mechanisms are optimal in our setup, even when receivers can

communicate with each other post-signal and regardless of their communication method. When

the candidate’s characteristics can be summarized as a one-dimensional variable, and all receivers’

utility functions are linear in this variable, solving an optimal public persuasion mechanism in our

setup aligns with the general model of Candogan (2022). In this case, we slightly simplify the

convex optimization problem in Candogan (2022), and recover many of the results from Candogan

(2022) and provide a new understanding of the optimal persuasion mechanism from the dual point

of view.

Bergemann and Morris (2016) and Bergemann and Morris (2019) relate the multi-receiver per-

suasion problem to the game-theoretic concept of Bayes correlated equilibrium (BCE). This relation-

ship leads to a natural LP formulation for obtaining an optimal persuasion mechanism. Specifically,

the decision variables in the LP are joint probabilities of the state and the receivers’ actions, and

the constraints completely characterize the set of BCEs.3 Our first-best relaxation problem (2) is

also an LP. However, in our LP, the decision variables are marginal allocation probabilities under

a mechanism. The LP imposes only participation constraints that any mechanism must satisfy,

3That is, a joint distribution sustains a BCE if and only if it is feasible to the LP.
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and thus, does not precisely characterize the set of equilibrium outcomes. Finally, Bergemann and

Morris (2019) also explore when public persuasion mechanisms are optimal (Section 4.1 there).

Their model does not incorporate post-signal communications. They show that public persuasion

mechanisms are optimal when receivers’ actions are strategic complements, as these mechanisms

induce a positive correlation in the receivers’ actions. However, in our setup, the receivers’ actions

are not strategic complements.

Kolotilin (2018) and Dworczak and Martini (2019) also use duality to characterize optimality

conditions and to interpret an optimal persuasion mechanism. However, we study different prob-

lems, formulate the optimization problem in different ways, and apply duality differently. Specifi-

cally, Kolotilin (2018) dualize a consistency constraint for the marginal distribution of the sender’s

state and Dworczak and Martini (2019) dualize the mean-preserving spread constraint. In contrast,

we dualize the employers’ participation constraints.

Ostrovsky and Schwarz (2010) and Boleslavsky and Cotton (2015) study school grading prob-

lems similar to our setting. Ostrovsky and Schwarz (2010) consider a model with a continuum of

schools (senders) and employers (receivers) and study the schools’ equilibrium grading policies (per-

suasion mechanism). Each school is assumed to use a public persuasion mechanism. Boleslavsky

and Cotton (2015) consider a setup with two schools (senders) and one evaluator (receiver), where

each school determines both its investment level in quality and grading policies.

Finally, other extensions of Bayesian persuasion have been considered in the literature, including

multiple senders (Gentzkow and Kamenica 2017), privately-informed receivers (Kolotilin et al.

2017, Guo and Shmaya 2019), and dynamic models (Ely 2017), which are not included in our

model. In addition, numerous works focus on various operational applications, such as incentivizing

exploration (Papanastasiou et al. 2018), signaling product availability (Drakopoulos et al. 2021),

signaling congestion in queueing systems (Anunrojwong et al. 2023), and informing the severity of

a pandemic (De Véricourt et al. 2021); see Candogan (2020) for a comprehensive review.

1.2 Notation and Terminology

We let N denote the set of nonnegative integers. For any two integers a, b ∈ N with a ≤ b, we let

[a : b] = {a, a+1, . . . , b− 1, b} denote a sequence of integers starting from a and ending with b, and

we denote [n] = [1 :n] for any n ∈ N+. For any real number x ∈ R, we let (x)+ ≜ max{x, 0} denote

the maximum of x and 0.
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2 Problem Formulation

We consider a school advisor (referred to as “she”) who promotes her student in a job market with

n potential employers (referred to as “he”; e.g., schools with open junior faculty positions) via

strategic information disclosure (e.g., targeted recommendation letters). The student can accept at

most one offer and has a known preference among the employers. Specifically, we denote by vi > 0

the utility from the offer of employer i, and we rank employers in decreasing preference; that is,

vi > vj if i < j, as assumed in Assumption 2.1. If the student does not secure a job, we normalize

her utility to zero.

Assumption 2.1. The utility vi from accepting employer i’s offer satisfies 0 < vn < · · · < v2 < v1.

Let w ∈ Ω represent the characteristics of the student, where Ω is a general state space.4 While

the realization of w is privately observable to the school advisor, employers only possess a prior

distribution G(w) regarding the student’s characteristics, reflecting the reputation of the advisor’s

students. For each employer i, let ui(w) denote the utility of hiring a student with characteristics

w; the utility of not hiring is zero.

Information Disclosure Mechanism We study a Bayesian persuasion setup in which the advisor

(the sender), who has commitment power, designs an information disclosure mechanism to promote

her student to the n employers (the receivers). Let Si denote the set of signals employed by the

advisor to interact with employer i and S =
⊗n

i=1 Si represent the set of all signals. Upon observing

the characteristics w, the advisor sends a signal si ∈ Si to each employer i according to a joint

distribution f(s|w), where s = (s1, · · · , sn) ∈ S denotes the concatenation of the sent signals. We

define the information mechanism f(·|w) as a public mechanism if

1. The signals share a common signal space S, that is, Si = Sj = S for all i, j ∈ [n]; and

2. The signals (si)i∈[n] are perfectly correlated, that is, f(s|w) = 0 for any signal s = (si)i∈[n]

where si ̸= sj for some i, j ∈ [n].

With a public mechanism, employers always receive the same signal, eliminating the need for further

communication. Conversely, if f(·|w) allows for different signals among employers, we refer to it as

a private information mechanism. In this case, the employers may receive different signals, leading

to varied information about the student’s characteristics w.

4For example, we may have Ω ⊆ Rm, where m represents the number of attributes relevant to employers’ hiring
standards, such as research potential, teaching experience, and communication skills.
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Communication among Receivers We assume that employers may communicate with each other

after receiving the signal s. We do not formally model how employers will communicate. Notably,

employers may or may not be able to communicate, and if they do, it could be either simultaneously

or sequentially, using either cheap talk or with some degree of commitment. Any of these commu-

nication methods can be reasonable in specific scenarios. However, as we demonstrate in Section 3,

the optimal persuasion mechanism will be independent of the communication details. This is be-

cause, regardless of how employers communicate, a public information disclosure mechanism will

always be optimal for the sender, leaving nothing for the receivers to communicate.

However, some notations are helpful to describe the problem. Given a specific communication

protocol, let Ci denote the set of information that employer i can receive from other employers

and C =
⊗n

i=1Ci represent the communication space. Denote the communication outcome as

c = (c1, ..., cn) ∈ C, where ci is the information employer i receives through communication. Given

a signal s, suppose the cumulative distribution function of c is C(c|s), and the probability density

function of c is c(c|s) = dC(c|s)
dc , possibly derived from the employers’ equilibrium strategies.

Sender’s Problem The game proceeds as follows:

1. The advisor commits to an information disclosure mechanism f(·|w) and a signal space S =⊗n
i=1 Si.

2. The student’s characteristics w are drawn from the cumulative probability distribution G(w).

A signal s = (si)i∈[n] is then generated according to the disclosure mechanism f(·|w) and sent

to the employers.

3. Employers communicate with each other after receiving the signal s using C(·|s), which may

represent an equilibrium communication strategy in a specific scenario. After communication,

each employer i decides whether to extend an offer to the student based on the signal si and

the communication outcome ci.

4. The student accepts the offer that maximizes her payoff, which corresponds to the employer

with the smallest index among those sending offers, according to Assumption 2.1.

Given a signal and communication outcome s ∈ Si and c ∈ Ci, we define S
i(s) = {s ∈ S : si = s}

and Ci(c) = {c ∈ C : ci = c} as the sets of possible signals and communications, respectively.

Upon observing s and c, employer i understands that the signal must be in the set Si(s) and

the communication outcome must be in the set Ci(c). He updates his belief about the student’s

characteristics w, the signal s, and the communication outcome c using Bayes’s rule whenever
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possible. Specifically, let fi(s, c) denote the probability that employer i receives a signal s and

communication outcome c:

fi(s, c) =

∫
w∈Ω

∫
s∈Si(s)

∫
c∈Ci(c)

c(c|s) f(s|w) dc ds dG(w).

If fi(s, c) > 0, the employer i’s posterior belief on the tuple (w, s, c) is defined as

fi(w, s, c|s, c) =


dG(w)f(s|w) c(c|s)

fi(s,c)
, if s ∈ Si(s) and c ∈ Ci(c),

0, otherwise.

Denote employer i’s equilibrium strategy by δi(s, c), representing his probability of extending an

offer after receiving a signal s ∈ Si and communication outcome c ∈ Ci. The optimality of employer

i’s strategy implies that δi(s, c) follows the following equation:

δi(s, c) =


0, if E

[
ui(w) · 1[a∗j = 0, ∀ j < i] | s, c

]
< 0,

δ ∈ [0, 1], if E
[
ui(w) · 1[a∗j = 0, ∀ j < i] | s, c

]
= 0,

1, if E
[
ui(w) · 1[a∗j = 0, ∀ j < i] | s, c

]
> 0,

where the binary variable a∗j ∈ {0, 1} represents employer j’s action of extending an offer in an

equilibrium and satisfies P[a∗j = 1|sj , cj ] = δj(sj , cj), and the expectation E[·|s, c] is taken over the

posterior distribution fi(w, s, c|s, c). Note that the student accepts employer i’s offer if and only if

none of the employers j < i extends an offer, which is represented by 1[a∗j = 0, ∀ j < i].

Finally, let the random set I(s, c) denote the employers who extend an offer and i(s, c) ≜

min I(s, c) the index of the offer to accept, given the signal realization s ∈ S and communication

outcome c ∈ C and under the employers’ equilibrium strategies. If I(s, c) = ∅, that is, the student

receives no offer, we let i(s, c) = ∅ and v∅ = 0 as the corresponding utility of the student. The

advisor selects an information disclosure mechanism f(·|w) that maximizes the expected payoff of

the student by solving

V ∗ ≜ max
f(·|w)

∫
w∈Ω

∫
s∈S

∫
c∈C

Ei(s,c)

[
vi(s,c)

]
· c(c|s) · f(s|w) · dc ds dG(w). (1)

In (1), the expectation Ei(s,c)[·] is taken over the possible randomness in the receivers’ equilibrium

offer-extending strategies when the signal and communication realizations are s and c, respectively,

and V ∗ denotes the expected payoff of an optimal information disclosure mechanism.
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3 Optimality of Public Persuasion

In this section, we illustrate that a public persuasion mechanism solves the advisor’s optimal infor-

mation disclosure problem (1), regardless of how employers communicate. We begin by introducing

a relaxation of the designer’s problem (1) in Section 3.1, which provides an upper bound on the

sender’s optimal expected payoff V ∗.

3.1 First-Best Problem with Participation Constraints

In this section, we consider the first-best relaxation problem (2) for the sender’s information design

problem, where we impose only the participation constraints of the employers.

V̄ = max
q(i|w)≥0

n∑
i=1

vi ·
∫
w∈Ω

q(i|w) dG(w)

s.t.

∫
w∈Ω

ui(w) q(i|w) dG(w) ≥ 0, ∀ i ∈ [n],∑
i∈[n]

q(i|w) ≤ 1, ∀w ∈ Ω.

(2)

In (2), a central planner allocates the candidate with characteristics w to employer i with a prob-

ability of q(i|w), and requires the employer to hire the candidate when the latter is allocated to

him. The chosen q(i|w) ensures a nonnegative expected utility for each employer, as indicated by

the first constraint in (2). This reflects the fact that each employer should be at least break-even

in expectation from hiring. In addition, any candidate is allocated to at most one employer, as

indicated by the second constraint in (2). This reflects the fact that the candidate can accept at

most one offer. The central planner chooses q(i|w) satisfying these two constraints to maximize the

candidate’s expected payoff, and the optimal value is denoted by V̄ .

Lemma 3.1 demonstrates that (2) provides an upper bound on the sender’s optimal expected

payoff V ∗, regardless of how employers communicate.

Lemma 3.1. We have V̄ ≥ V ∗, regardless of how employers communicate.

We prove Lemma 3.1 in Appendix A.1. Intuitively, given any disclosure mechanism f(·|w), let

q(i|w) denote the ex-ante probability that the candidate joins employer i when her characteristics

are w, under the employers’ equilibrium strategies induced by f(·|w). These {q(i|w)} are feasible

to (2) and have an objective value no larger than V̄ .
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3.2 Optimality of Public Persuasion

In this section, we construct a public persuasion mechanism f∗(·|w) from the optimal solution of (2)

and show that its expected payoff attains the first-best upper bound V̄ . Therefore, the mechanism

f∗(·|w) is optimal to (1), and this optimality does not depend on the communication protocol

among receivers.

Let {q∗(i|w)} denote an optimal solution to (2). We consider a public persuasion mechanism

f∗(·|w) with signal space Si = S ≜ [n] ∪ {∅} for all employers i ∈ [n]. When the candidate’s

characteristics are w, the mechanism broadcasts the signal s = i to all employers with probability

q∗(i|w) for any i ∈ [n] and the signal s = ∅ to all employers with probability 1 −
∑

i∈[n] q
∗(i|w).

We can interpret the signal s = i as a recommendation for only employer i to extend an offer and

the signal s = ∅ as a recommendation for none of the employers to extend an offer. Lemma 3.2

shows that this persuasion mechanism achieves the first-best upper bound V̄ .

Lemma 3.2. Under the public persuasion mechanism f∗(·|w), it is an equilibrium for each employer

i ∈ [n] to extend an offer only upon receiving the signal s = i. Moreover, the expected payoff of the

mechanism f∗(·|w), denoted by V P, satisfies V P = V̄ .

We prove Lemma 3.2 in Appendix A.2. To understand the equilibrium in Lemma 3.2, suppose

that the school advisor recommends the candidate to employer i. Employer i is willing to extend

an offer because: (i) his offer will be accepted with certainty given that no other employer will

extend an offer, and (ii) he can break even from his offer in expectation, as indicated by the first

constraint in (2). Any employer j > i cannot benefit from extending an offer because the candidate

will accept the more attractive offer from employer i. Any employer j < i is unwilling to extend

an offer because: (i) his offer, if extended, will be accepted with certainty given that no better

offer will be extended, and (ii) {q∗(i|w)} being an optimal solution of (2) implies that employer j

cannot break even from his offer in expectation—otherwise, the central planner in (2) can strictly

improve the candidate’s payoff by allocating the candidate to employer j instead of employer i

without violating any constraint in (2).

Since the mechanism f∗(·|w) achieves the first-best upper bound V̄ , Lemma 3.1 implies that

the first-best upper bound is tight (i.e., V̄ = V ∗) and that f∗(·|w) is an optimal persuasion mecha-

nism, independent of how employers can communicate post-signal. Since the school advisor sends

the same information to all employers with mechanism f∗(·|w), communication becomes irrelevant.

Therefore, the sender eliminates any communication among the receivers for her own benefit, re-

gardless of the way receivers can communicate. This holds true even when the sender knows that
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the receivers cannot communicate but are aware of each other’s existence, as we elaborate further

in Remark 4.3.

4 Simplified Optimization for One-Dimensional Linear Utility Case

According to Lemma 3.2, the school advisor needs to focus only on public persuasion mechanisms

to solve the optimal persuasion problem (1). Moreover, the optimal public persuasion mecha-

nism can be derived from (2), and it achieves the first-best performance (i.e., the optimal value of

(2)). However, when the candidate’s characteristics w are infinite, the first-best problem (2) is an

infinite-dimensional LP, which can be challenging to solve. In this section, we focus on the case

where the state variable w is one-dimensional, and all of the receivers’ utility functions are linear in

w. we provide structural properties and derive the optimality condition of an optimal mechanism

from the Lagrangian dual of (2), where we dualize the participation constraints. Using the opti-

mality condition, we derive the optimal mechanism in closed form when there are two employers

in Section 4.3. For the general case with n employers (Section 4.4), problem (2) can be reduced

to a convex optimization problem with n decision variables and constraints, similar to Candogan

(2022), and thus can be solved efficiently. We establish the equivalence of the convex problem and

problem (2) from both the primal and dual viewpoints and provide a better understanding of the

optimal mechanism based on the Lagrangian dual of the convex problem.

4.1 The Setup

To start, we formally describe the one-dimensional linear utility case. First, we assume that the

candidate’s characteristics w can be summarized as a one-dimensional state variable within a finite

interval. Without loss of generality, let w ∈ Ω = [0, 1]. Moreover, we assume that w follows

a continuous distribution with a strictly increasing cumulative distribution function G(ω) and a

density function g(w) > 0 for any w ∈ (0, 1). We summarize the above in Assumption 4.1.

Assumption 4.1. The candidate’s characteristics w belong to the one-dimensional interval Ω =

[0, 1] and follow a continuous distribution. Let G(w) and g(w) denote the cumulative distribution

function and density function of w, respectively. The function G(w) is strictly increasing, so its

inverse, denoted by G−1(·), exists.

Second, we assume that for each employer i ∈ [n], the utility function for hiring a candidate

with characteristics w is linear in w; that is, ui(w) = κi ·
(
w − αi

)
, where κi and αi are positive
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constants. This assumption implies that each employer i considers only the mean value of the

characteristics w among the candidates who would accept employer i’s offer. Specifically, employer

i will extend an offer only if this mean value exceeds his hiring threshold αi. We state this linear

utility assumption in Assumption 4.2.

Assumption 4.2. For each employer i ∈ [n], the utility function ui(w) for a candidate with charac-

teristic w is increasing and linear in w with a threshold value αi > 0; that is, ui(w) = κi ·
(
w−αi

)
,

where κi and αi are positive constants.

Note that since employers are ranked in decreasing preference by Assumption 2.1, there is no

loss of generality to assume that the threshold values αi also decrease in the employer index i.

In other words, a more preferred employer is harder to get into. This is because, if employer i

is more preferred than j (vi > vj) but also easier to get into (αi ≤ αj), employer j will never be

targeted and can be dropped from consideration. Finally, we assume that all employers are selective,

meaning their threshold values αi are higher than the prior mean of the candidate’s characteristics

Ew∼G(w)[w]. We state these in Assumption 4.3.

Assumption 4.3. Let w0 ≜ Ew∼G(w)[w] denote the prior mean of the candidate’s characteristics w.

The employers’ threshold values αi satisfy 0 < w0 < αn < · · · < α2 < α1 < 1.

Based on the linear-utility Assumption 4.2, the first-best problem (2) can be written as (3):

V̄ = max
q(i|w)≥0

n∑
i=1

vi ·
∫ 1

0
q(i|w) g(w) dw

s.t.

∫ 1

0
w · q(i|w) g(w) dw ≥ αi

∫ 1

0
q(i|w) g(w) dw, ∀ i ∈ [n],∑

i∈[n]

q(i|w) ≤ 1, ∀w ∈ [0, 1].

(3)

4.1.1 Preliminary Properties of Optimal Solution of (3)

We conclude Section 4.1 by describing several properties related to an optimal solution of (3).

First, for any feasible solution to (3), the probability that a candidate receives an offer (prior to the

realization of w) is strictly less than one, as employers are selective according to Assumption 4.3.

Moreover, this probability is maximized when the sender targets only the most accessible employer

n. We formalize this in Proposition 4.1 and provide the proof in Appendix A.3.

Proposition 4.1. Let zn ∈ (0, 1) be such that E[w|w ≥ zn] = αn, where αn is the threshold value

of employer n. For any feasible solution {q(i|w)} of (3), we have
∑

i∈[n]
∫ 1
0 q(i|w)g(w)dw ≤ P(w ≥

12



zn) < 1, where the first inequality is attained when the sender targets only employer n; that is,

q(n|w) = 1 for any w ≥ zn, and q(i|w) = 0 for any i ̸= n or w < zn.

Second, Assumption 4.3 implies that the participation constraints in (3) are binding with any

optimal solution of (3). We state this in Proposition 4.2 and provide the proof in Appendix A.4.

Proposition 4.2. Under Assumption 4.3, the participation constraints are binding with any optimal

solution of (3).

Finally, we show that any optimal solution exhibits a cutoff structure. Specifically, there exists

a threshold value z ∈ (0, 1) such that a candidate receives an offer if and only if her characteristics w

exceeds z. We formalize this property in Proposition 4.3, with the proof provided in Appendix A.5.

Proposition 4.3. Any optimal solution has a cutoff structure. That is, for any optimal solution

{q∗(i|w)} of (3), there exists a threshold value z ∈ (0, 1) such that
∑

i∈[n]
∫ 1
z q∗(i|w)g(w)dw =

P(w ≥ z) and
∑

i∈[n]
∫ z
0 q∗(i|w)g(w)dw = 0.

4.2 The Lagrangian Dual Problem

In this section, we introduce the Lagrangian dual problem of (3), where we dualize the employers’

participation constraints. We then interpret the Lagrangian from a geometric view and derive the

optimality condition for an optimal persuasion mechanism.

Specifically, denote by µi ≥ 0 the Lagrange multiplier for the participation constraint of em-

ployer i ∈ [n]. The Lagrangian relaxation, denoted by V LR(µ) with µ = (µi)i∈[n] ∈ Rn
+, is as

follows:

V LR(µ) = max
q(i|w)≥0,∑

i∈[n] q(i|w)≤1

∫ 1

0

n∑
i=1

{
vi + µi

(
w − αi

)}
q(i|w) g(w) dw

=

∫ 1

0

 max
q(i|w)≥0,∑

i∈[n] q(i|w)≤1

n∑
i=1

{
vi + µi

(
w − αi

)}
· q(i|w)

 · g(w) dw.

(4)

After dualizing the participation constraints, the Lagrangian decouples over characteristics w.

Specifically, define

ℓi
(
w;µi

)
≜ vi + µi

(
w − αi

)
as a line associated with employer i ∈ [n]. This line passes through the point (αi, vi) and has a

13



nonnegative slope µi ≥ 0. In addition, let

h
(
w;µ

)
≜ max

i∈[n]
ℓi
(
w;µi

)
= max

i∈[n]

{
vi + µi

(
w − αi

)}
denote the maximum of the n lines and h̄(w;µ) ≜ max

{
h(w;µ), 0

}
. Both the functions h(w;µ)

and h̄(w;µ) are convex, increasing (since µi ≥ 0), and piecewise linear in w. Finally, let QLR(µ)

denote the set of optimal solutions {q(i|w)} to V LR(µ). According to (4), the set QLR(µ) can be

expressed as follows:

QLR(µ) =

{
q(i|w) : q(i|w) ≥ 0 and

∑
i∈[n]

q(i|w) ≤ 1, ∀w ∈ [0, 1],

∑
i∈[n]

q(i|w) = 1 if h(w;µ) > 0,

q(i|w) > 0 only if ℓi(w;µi) = h̄(w;µ)

}
.

(5)

That is, an optimal solution of V LR(µ) allocates a candidate with characteristics w to employer i

with a positive probability only if employer i’s line ℓi(w;µi) is above the x-axis and not dominated

by the other employers’ lines {ℓi(w;µi)}j ̸=i at point w.

To provide an economic interpretation, note that the Lagrangian multiplier µi measures the

extent to which employer i’s participation constraint is tight. The expression of employer i’s line,

ℓi(w;µi), indicates that the school advisor’s payoff from allocating a candidate with quality w to

employer i has two components in the Lagrangian. The first component, vi, is the direct payoff

from letting employer i hire the candidate. The second component, µi(w − αi), is the indirect

payoff from the impact of this hire on employer i’s participation constraint in the original problem.

Specifically, µi represents the significance of this indirect effect. If w > αi, allocating the candidate

to employer i alleviates employer i’s participation constraint in the original problem, enabling

the school advisor to potentially place more under-qualified candidates to employer i, who might

otherwise be unemployed. Conversely, if w < αi, allocating the candidate to employer i tightens the

participation constraint, limiting the number of under-qualified candidates the advisor can place

to employer i in the original problem. Combining both the direct and indirect payoffs, the school

advisor allocates the candidate with quality w to the employer with the highest positive payoff—

that is, the highest value of ℓi(w;µi) among all i ∈ [n], provided this value is positive. Otherwise,

the advisor does not allocate this candidate to any employer, securing a payoff of zero.
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Finally, from (4) we have

V LR(µ) =

∫ 1

0
h̄
(
w;µ

)
g(w) dw.

Since every feasible policy to (3) is feasible to (4) and attains an objective that is no smaller,

V̄ ≤ V LR(µ) for any µ ∈ Rn
+. We formally state this weak-duality property in Lemma 4.4.

Lemma 4.4 (Weak Duality). We have V̄ ≤ V LR(µ) for any dual variable µ ∈ Rn
+.

4.2.1 The Optimal Lagrangian Dual

Since the Lagrangian V LR(µ) is a convex function of µ from (4), we can solve a convex optimization

problem

V LR ≜ min
µ∈Rn

+

V LR(µ) ≥ V̄ (6)

to obtain the tightest Lagrangian relaxation bound V LR. Let µ∗ = (µ∗
i )i∈[n] ∈ argminµ∈Rn

+
V LR(µ)

denote an optimal Lagrangian dual variable; it can be solved efficiently according to Remark 4.1.

Remark 4.1 (Computing µ∗). From Danskin’s theorem (Proposition 4.5.1 in Bertsekas et al. 2003)

and the fact that a convex combination of any two optimal solutions of (4) is also optimal to (4),

the sub-differential (i.e., set of sub-gradients) of V LR(µ) at any µ ∈ Rn
+, denoted by ∂V LR(µ), can

be expressed as

∂V LR(µ) =

{
(gi)i∈[n] with gi ≜

∫ 1

0
(w − αi) q(i|w) g(w) dw : {q(i|w)} ∈ QLR(µ)

}
.

Since V LR(µ) and its sub-gradients can be efficiently computed, we can apply sub-gradient-based

methods (e.g., the sub-gradient method or cutting-plane method) to solve the convex program (6)

and determine an optimal Lagrangian dual variable µ∗ efficiently.

Furthermore, Lemma 4.5 demonstrates that strong duality holds, which follows standard strong

duality for convex optimization in a vector space.

Lemma 4.5 (Strong Duality). Problem (3) and its Lagrangian relaxation (4) have the following

relationship.

1. Strong duality holds, and there exists an optimal dual variable µ∗ ∈ Rn
+; that is, V̄ = V LR =

V LR(µ∗).
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2. µ ∈ Rn
+ is an optimal dual variable and {q(i|w)} is an optimal solution of (3) if and only if

(1) {q(i|w)} ∈ QLR(µ), and (2) all participation constraints in (3) are binding with {q(i|w)}.

We prove Lemma 4.5 in Appendix A.6. Lemma 4.5 implies several structural properties of an

optimal solution {q∗(i|w)} and an optimal dual variable µ∗ of (3), which we provide below. First,

we show that if an employer i ∈ [n] is considered by the sender—that is, q∗i ≜
∫ 1
0 q∗(i|w)dw > 0—

the point (αi, vi) lies on the envelope function h(w;µ∗) and is within the interior of the line segment

associated with employer i. We state this in Proposition 4.6 and provide its proof in Appendix A.7.

Proposition 4.6. Let µ∗ = (µ∗
i )i∈[n] be an optimal dual variable of (3). Suppose that there exists

an optimal solution {q∗(i|w)} to (3) such that
∫ 1
0 q∗(i|w)dw > 0 (i.e., employer i is considered

by the sender). Then, there exist constants b, b̄ ∈ [0, 1] satisfying 0 < b < α1 < b̄ ≤ 1 such that

h̄(w;µ∗) = ℓi(w;µ
∗
i ) (i.e., employer i’s line is above the x-axis and the other employers’ lines) if

and only if w ∈ [b, b̄].

Second, we show in Proposition 4.7 that the optimal dual variables {µ∗
i } are strictly positive and

decrease (after removing disregarded employers). Additionally, the probability that a candidate

receives an offer is the same under any optimal solution of (3). We prove Proposition 4.7 in

Appendix A.8.

Proposition 4.7. Let {q∗(i|w)} be an optimal solution and µ∗ = (µ∗
i )i∈[n] an optimal dual variable

of (3). The following hold:

1. µ∗
i > 0 for all i ∈ [n]. Therefore, the envelope function h(w;µ∗) is strictly increasing in w.

2. The cutoff value in Proposition 4.3 is unique. Specifically,
∑

i∈[n]
∫ 1
0 q∗(i|w)dw = P(w ≥ z∗),

where z∗ ∈ (0, 1) is the root of h(w;µ∗), meaning that h(z∗;µ∗) = 0.

3. Let P ≜ {i ∈ [n] : q∗i ≜
∫ 1
0 q∗(i|w)dw > 0} be the set of employers the sender considers. Then,

{µ∗
i }i∈P decreases with the employer index i.

Finally, Bullet 2 of Lemma 4.5 provides optimality conditions for a persuasion mechanism.

Specifically, if we can find an optimal solution {q(i|w)} of V LR(µ∗) that ensures that all partici-

pation constraints in (3) are binding, then {q(i|w)} is also optimal to (3) and provides an optimal

(public) persuasion mechanism. However, how to identify such a desirable {q(i|w)} ∈ QLR(µ∗)

through appropriate tie-breaking remains generally unclear. Despite this, in Section 4.3, we apply

Lemma 4.5 to derive the optimal persuasion mechanism for the case of two receivers.
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4.3 Two-Receiver Case

In this section, we assume that there are two employers i ∈ {1, 2}, with offer values v1 > v2 > 0 and

recruiting thresholds α1 > α2 > w0 > 0, and we derive the optimal public persuasion mechanism

based on Bullet 2 of Lemma 4.5.

According to the revelation principle, it is optimal to focus on public persuasion mechanisms

with a signal space S ≜ {1, 2,∅} that satisfy incentive compatibility (IC) constraints. Notably,

the signal s = i represents a recommendation for only employer i to extend an offer, and s = ∅

represents a recommendation for neither employer to extend an offer. Moreover, IC constraints

must hold. Specifically, conditioning on the signal s = i, only employer i is willing to extend an

offer; and if the signal s = ∅ is transmitted, neither employer is willing to extend an offer. Note

that all employers’ participation constraints are binding with any optimal mechanism according to

Bullet 2 of Lemma 4.5. Additionally, given the participation constraints, the IC constraints for

s = i hold automatically, because:

1. Conditioning on s = 1, the posterior mean of the candidate’s characteristics w is α1; therefore,

employer 1 will extend an offer, and employer 2 has no incentive to do so because the candidate

will certainly select employer 1.

2. Conditioning on s = 2, the posterior mean of w is α2, causing only employer 2 to extend an

offer. Employer 1 strictly prefers not to make an offer as it would be loss-making.

As a result, given the binding participation constraints, the IC constraints require only that, con-

ditioning on s = ∅, the posterior mean of w is smaller than α2, so neither employer will extend

an offer. Let M denote the set of mechanisms with signal space S that satisfy the IC and binding

participation constraints. Specifically, {q(i|w)} ∈ M if they satisfy the following constraints with

n = 2: ∫ 1

0
w · q(i|w) g(w) dw = αi

∫ 1

0
q(i|w) g(w) dw, ∀ i ∈ [n],∫ 1

0
w · q(∅|w) g(w) dw < αn

∫ 1

0
q(∅|w) g(w) dw,∑

i∈[n]

q(i|w) + q(∅|w) = 1, ∀w ∈ [0, 1],

q(i|w) ≥ 0, ∀w ∈ [0, 1], i ∈ [n] ∪ {∅}.

Additionally, let qi(M) ≜
∫ 1
0 q(i|w) g(w) dw denote the probability that the candidate is allocated

to employer i given a mechanism M = {q(i|w)} ∈ M.
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4.3.1 Preparation: Extreme Mechanisms Focusing on a Single Receiver

We first consider two extreme mechanisms in which the sender prioritizes either receiver 1 or 2 as

preparation for characterizing the optimal mechanism in Section 4.3.2.

First, consider the mechanism M2 ∈ M where the sender completely targets employer 2. Specif-

ically, let z2 > 0 be such that E[w|w ≥ z2] = α2.
5 The sender transmits the signal s = 2 when

w ≥ z2. Upon receiving the signal, only employer 2 will extend an offer. Since z2 < α1,
6 the

sender can no longer persuade employer 1 to extend an offer to candidates whose quality w is in

the remaining pool [0, z2) after targeting employer 2. Therefore, the sender can only transmit the

signal s = ∅ when w < z2. As a result, q1(M2) = 0 and q2(M2) = P[w ≥ z2]. The sender receives

an offer if and only if w ≥ z2, which occurs with probability P[w ≥ z2].

Second, consider the mechanism M1 ∈ M where the sender prioritizes employer 1 and recom-

mends to employer 2 only if there exist candidates qualified for employer 2 after targeting employer

1. Specifically, let z̄1 > 0 be such that E[w|w ≥ z̄1] = α1. The sender transmits the signal s = 1

when w ≥ z̄1. Thus, q1(M1) = P[w ≥ z̄1]. Then, the following two scenarios can occur depending

on the value of z̄1 relative to α2:

• If z̄1 > α2: The sender can still persuade employer 2 to extend an offer to some candidates in

the remaining pool after targeting receiver 1. Specifically, find a real value z1 with 0 < z1 <

α2 < z̄1 such that E[w|z1 ≤ w < z̄1] = α2. The sender transmits the signal s = 2 when z1 ≤

w < z̄1 and transmits the signal s = ∅ when w < z1. Therefore, q2(M1) = P[z1 ≤ w ≤ z̄1].

• If z̄1 ≤ α2: The sender can no longer persuade employer 2 to extend an offer to the remaining

pool after targeting employer 1. In this case, let z1 = z̄1. The sender transmits the signal

s = ∅ when w < z1; therefore, q2(M1) = 0.

In both scenarios, the sender receives an offer if and only if w ≥ z1, which occurs with probability

P[w ≥ z1].

Proposition 4.8 provides several properties regarding any mechanism in the set M.

Proposition 4.8. Given any public persuasion mechanism M ∈ M, we have the following:

1. q1(M) ≤ q1(M1) = P[w ≥ z̄1].

2. q2(M) ≤ q1(M) + q2(M) ≤ q2(M2) = P[w ≥ z2].

5We have z2 > 0 because α2 > w0 by Assumption 4.3.
6Otherwise, the posterior mean would exceed α1, which is larger than α2.
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3. For any mechanism M ∈ M with a cutoff z ∈ (0, 1) such that the candidate receives an offer

if and only if w ≥ z, one of the following must be true:

(a) z ∈ [z2, z1], or

(b) z1 < α2 < z̄1 = z.

In addition, case (b) is suboptimal and can disregarded in future discussions.7

4. Conversely, for any value z ∈ [z2, z1], there exists a mechanism M ∈ M such that the

candidate receives an offer if and only if w ≥ z. Moreover, for any such mechanism M , we

have q1(M) = P[w ≥ z] · E[w|w≥z]−α2

α1−α2
≥ 0 and q2(M) = P[w ≥ z] · α1−E[w|w≥z]

α1−α2
≥ 0.

We prove Proposition 4.8 in Appendix A.9. Intuitively, the probability of joining employer 1

is highest when the sender primarily targets employer 1 (using mechanism M1). However, this

also lowers the probability of receiving any offer (which is P[w ≥ z1]) among the “reasonable”

mechanisms depicted in Bullet 3 because employer 1 is more challenging to get into. Conversely,

the probability of receiving an offer is the highest when the sender exclusively targets the less

competitive employer 2 (using mechanism M2), which is P[w ≥ z2]. Furthermore, Bullet 4 shows

that any acceptance probability between these two extremes can be sustained by a mechanism that

carefully balances the two employers. As we will show in Section 4.3.2, the optimal mechanism in

the two-receiver case can be any of the mechanisms in Bullet 4, depending on the desirability (v1)

and hiring bar (α1) of employer 1 relative to those of employer 2.

We conclude this section with a remark that interprets the two probabilities q1(M) and q2(M)

in Bullet 4 of Proposition 4.8.

Remark 4.2 (Interpreting Bullet 4 of Proposition 4.8). To understand the two probabilities q1(M)

and q2(M), note that for any mechanism M ∈ M with a cutoff structure and a threshold value of

z, the probabilities q1 ≜ q1(M) and q2 ≜ q2(M) must satisfy the following two linear equations:

q1 + q2 = P[w ≥ z],

α1q1 + α2q2 = (q1 + q2) · E[w|w ≥ z],
(7)

where the first equation follows from the fact that the candidate receives an offer (from either

employer 1 or 2) if and only if w ≥ z, and the second equation follows from the fact that the

7Note that any optimal persuasion mechanism has a cutoff structure according to Proposition 4.3. Moreover,
when α2 < z̄1, since the sender can still persuade employer 2 to extend an offer to some candidates in the remaining
pool after targeting receiver 1, there is no loss of optimality to assume that z < z̄1.
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Figure 1: Partition of the value of v1 in Lemma 4.9.

participation constraints are binding (i.e., E[w|s = i] = αi) and the law of total expectation. These

two equations uniquely determine the values of q1 and q2, as stated in Bullet 4 of Proposition 4.8.

Conversely, consider a mechanism M that sends the signal s = ∅ if and only if w < z, and suppose

that the values of q1 and q2 satisfy (7). According to (7), if P[s = 1] = q1 and E[w|s1] = α1, then

it follows that P[s = 2] = q2 and E[w|s2] = α2, and vice versa.

4.3.2 Optimal Mechanism with Two Receivers

In this section, we characterize the optimal persuasion mechanism with two receivers. Intuitively,

there is a trade-off: An offer from employer 1 brings a higher payoff, but targeting employer 1 more

aggressively reduces the overall probability of receiving an offer.

Notably, according to Bullet 3 of Proposition 4.8, the cutoff value z, such that the candidate

with characteristics w ∈ [z, 1] receives an offer, satisfies z ∈ [z2, z1] for any reasonable mechanism

M ∈ M. This brings two lines, one of which (denoted by η1) passes through the points (z1, 0) and

(α2, v2), and the other (denoted by η2) passes through the points (z2, 0) and (α2, v2), as illustrated

in Figure 1. These two lines partition the value of v1 ∈ [v2,∞) into three regions, which determine

the form of the optimal persuasion mechanism.

Lemma 4.9 illustrates the optimal persuasion mechanism for the two-receiver case. Specifically,

if the value of v1 is sufficiently large (particularly, above line η1), prioritizing employer 1 is optimal.

Alternatively, if v1 is sufficiently small (particularly, below line η2), completely targeting employer

2 is optimal. Finally, if v1 falls between the two lines, the optimal mechanism requires a non-trivial

trade-off between the two employers.

Lemma 4.9. Under Assumptions 4.1 – 4.3, the optimal public persuasion mechanism with two
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receivers is given as follows:

1. If v1 ≤ v2 ·
(
α1−z2
α2−z2

)
(i.e., the point (α1, v1) lies below line η2), mechanism M2 (fully targeting

employer 2) is optimal;

2. If v1 ≥ v2 ·
(
α1−z1
α2−z1

)
(i.e., the point (α1, v1) lies above line η1), mechanism M1 (prioritizing

employer 1) is optimal;

3. Otherwise, any mechanism M ∈ M satisfying Bullet 4 of Proposition 4.8 with a cutoff value

z∗, where z∗ ≜ α2−v2 ·
(
α1−α2
v1−v2

)
∈ [z2, z1] represents the x-intercept of the line passing through

the points (α2, v2) and (α1, v1), is optimal. In other words, the mechanism M ∈ M satisfies

the following:

(a) It sends the signal s = ∅ with a probability of one if w < z∗ and a probability of zero if

w ≥ z∗;

(b) Participation constraints are binding (required by definition of M), that is, E[w|s = i] =

αi for i ∈ {1, 2};

(c) q1(M) = q∗1 ≜ P[w ≥ z∗] · E[w|w≥z∗]−α2

α1−α2
and q2(M) = q∗2 ≜ P[w ≥ z∗] · α1−E[w|w≥z∗]

α1−α2
(as

indicated by Bullet 4 of Proposition 4.8).

We prove Lemma 4.9 in Appendix A.10. In the proof, we identify a set of dual variables µ ∈ Rn
+,

which, together with the proposed mechanism, satisfies Bullet 2 of Lemma 4.5. This indicates that

the mechanism is optimal to (3), and µ is an optimal dual variable.

In Case 3 of Lemma 4.9, the trade-off between the two employers is non-trivial. In this case, the

optimal Lagrangian dual variable is µ∗ =
(
µ∗
1, µ

∗
2

)
with µ∗

1 = µ∗
2 =

v1−v2
α1−α2

> 0. This value equals the

slope of the line passing through the points (α2, v2) and (α1, v1). Consequently, the lines ℓ1
(
w;µ∗

1

)
and ℓ2

(
w;µ∗

2

)
of the two employers completely overlap and coincide with this line (as visualized in

Figure 3(b)). As a result, according to (5), any allocation {q(i|w)} with q(1|w) + q(2|w) = 1 for

w ≥ z∗ and q(1|w) = q(2|w) = 0 for w < z∗ is optimal to the Lagrangian V LR(µ∗). As long as we

appropriately allocate the probability of one between q(1|w) and q(2|w) for any w ≥ z∗, ensuring

that the participation constraints are binding for both employers, it follows that the candidate joins

each employer i with a probability of q∗i by Bullet 4 of Proposition 4.8, and that the mechanism

{q(i|w)} is optimal to (3) according to Lemma 4.9.

We note that although the aggregate allocation probabilities {q∗i } are unique according to Bullet

4 of Proposition 4.8, there are various ways to construct a set of probabilities {q(i|w)} that satisfies

Bullet 3 of Lemma 4.9 and is thus optimal to (3) (as we demonstrate in the proof of Bullet 4 of
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Proposition 4.8). Below, we present two simple approaches to construct an optimal mechanism and

illustrate them in Example 4.1.

• (Randomized Mechanism with a Monotone Structure) Let q(1|w) = q∗1 /P[w ≥ z̄1] ≤ 1 for

w ≥ z̄1 and q(1|w) = 0 otherwise, recalling that z̄1 > 0 is defined such that E[w|w ≥ z̄1] = α1.

Additionally, let q(2|w) = 1− q(1|w) for w ≥ z∗ and q(2|w) = 0 otherwise. This corresponds

to a randomized persuasion mechanism that satisfies Bullet 3 of Lemma 4.9 and is, therefore,

optimal to (3). Note that the candidate’s expected payoff, v(w) ≜
∑

i viq(i|w), is increasing

in w by construction, which can be desirable in practice.8

• (Deterministic Mechanism with a Double-Interval Structure) Identify an interval
[
b, b̄
]
⊆[

z̄1, 1
]
such that P

[
b ≤ w ≤ b̄

]
= q∗1 and E

[
w|b ≤ w ≤ b̄

]
= α1.

9 Let q(1|w) = 1 for

w ∈
[
b, b̄
]
, q(2|w) = 1 for w ∈ [z∗, b) ∪

(
b̄, 1
]
, and q(∅|w) = 1 for w < z∗. This corresponds

to the deterministic persuasion mechanism described in Candogan (2022). The mechanism

satisfies Bullet 3 of Lemma 4.9 and is, therefore, optimal to (3). Additionally, the mechanism

exhibits a double-interval structure, with each signal associated with at most two intervals.

The candidate’s expected payoff is not monotone in w with this mechanism.

Example 4.1. Suppose w ∼ Unif[0, 1] follows a uniform distribution with support [0, 1], the candi-

date’s payoffs from the two employers’ offers are v1 = 2 and v2 = 1, and the employers’ threshold

values are α1 = 0.9 and α2 = 0.7. Given these values, we have z̄1 = 0.8, z1 = 0.6, z∗ = 0.5,

and z2 = 0.4. The optimal dual variables are µ∗
1 = µ∗

2 = 5. Figure 2(a) illustrates the lines

ℓ1(w;µ
∗
1) and ℓ2(w;µ

∗
2) of the two employers, which fully overlap. Additionally, we have z∗ = 0.5,

q∗1 = 1/8, and q∗2 = 3/8. There are multiple ways to construct an optimal persuasion mechanism

that satisfies Bullet 3 of Lemma 4.9. The previously described random persuasion mechanism is

illustrated in Figure 2(b). The previously described deterministic persuasion mechanism is illus-

trated in Figure 2(c). We can also construct a second deterministic persuasion mechanism with a

double-interval structure for this problem instance, where the signal s = 1 is associated with two

intervals, as illustrated in Figure 2(d).

We conclude this section with a remark demonstrating that when receivers cannot communicate

but are aware of each other, the vanilla private persuasion mechanism is suboptimal.

8An increasing payoff function v(w) prevents a student from strategically degrading her “quality” w for a better
offer.

9Since E[w|w ≥ z̄1] = α1 by definition and P[w ≥ z̄1] ≥ q∗1 by Bullet 1 of Proposition 4.8, such an interval exists.
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Figure 2: (a) Illustration of the two employers’ lines ℓ1(w;µ
∗
1) and ℓ2(w;µ

∗
2) (solid), which pass through the

two points (0.7, 1) and (0.9, 2) and fully overlap, and the two lines η1 and η2 in Lemma 4.9 (dashed). (b)
A random optimal persuasion mechanism with q(1|w) = 5/8 for w ∈ [0.8, 1], q(2|w) = 3/8 for w ∈ [0.8, 1]
and q(2|w) = 1 for w ∈ [0.5, 0.8]. (c) A deterministic optimal persuasion mechanism with q(1|w) = 1 for
w ∈ [0.8375, 0.9625] (centered around 0.9 and of length 1/8) and q(2|w) = 1 for w ∈ [0.5, 0.8375]∪ [0.9625, 1].
(d) A deterministic optimal persuasion mechanism with q(2|w) = 1 for w ∈ [0.5125, 0.8875] (centered around
0.7 and of length 3/8) and q(1|w) = 1 for w ∈ [0.5, 0.5125] ∪ [0.8875, 1].

Remark 4.3 (Failure of Vanilla Private Persuasion Absent Communication). When there is no com-

munication channel between receivers, it is tempting to treat them in isolation and send separate

signals to each receiver using their respective optimal persuasion. We call this vanilla private per-

suasion mechanism and show that it is suboptimal. First, we note that even if the sender knows

the receivers have no communication channel and thus cannot communicate, a public persuasion

mechanism remains optimal by Lemma 3.2. Conversely, A vanilla private persuasion mechanism

involves sending the signal s = 1 to employer 1 when w ≥ z̄1 and the signal s = 2 to employer

2 when w ≥ z2. Despite the lack of communication, employer 2, aware of the presence of a

more preferred employer 1, will never extend an offer upon receiving the signal s = 2. This is
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because the offer from employer 1 adversely selects candidates recommended to employer 2, lead-

ing employer 2 to a negative expected utility from the candidates who accept his offer. Notably,

only candidates with characteristics w ∈ [z2, z̄1) will select employer 2, whose expected quality is

E[w|z2 ≤ w < z̄1] < E[w|w ≥ z2] = α2, which is smaller than α2. Given employer 2’s equilib-

rium strategy, only candidates with quality w ∈ [z̄1, 1] is placed, which is suboptimal according to

lemma 4.9.

4.4 General Case

In this section, we solve (3) for the general case by reducing it to a convex optimization problem (8)

with n decision variables and constraints, which can be efficiently solved. Problem (8) is analogous

to problem (OPT) in Candogan (2022), but with n fewer decision variables and constraints. In

the following, we establish the connection between (3) and (8) from both the primal and dual

viewpoints (Section 4.4.1), derive structural properties of the optimal persuasion mechanism based

on the dual problem of (8) (Section 4.4.2), and construct an optimal persuasion mechanism with a

monotone structure (Section 4.4.3).

V CR =max
qi≥0

n∑
i=1

viqi

s.t.
∑
i≤k

αiqi ≤
∑
i≤k

qi · E

w∣∣∣∣∣G(w) ≥ 1−
∑
i≤k

qi

 =

∫ 1

1−
∑

i≤k qi

G−1(x) dx, ∀ k ∈ [n],

∑
i∈[n]

qi ≤ 1.

(8)

We first interpret (8). In (8), the decision variables qi represent the ex-ante probabilities that

the candidate joins employer i ∈ [n]; specifically, qi corresponds to
∫ 1
0 q(i|w)g(w)dw in (3). The first

constraint reflects the participation constraint for the employers. Only a limited portion of qualified

candidates meet the employers’ recruitment standards. This constraint requires that candidates

within the top
∑

i≤k qi quantile are sufficient to meet the recruiting bars (αi) of the top k employers,

given that each employer i ∈ [k] would recruit a proportion qi of candidates. This is a necessary

condition to sustain the participation of the first k employers. The equation in this constraint

follows from the fact that for any random variable w with a cumulative distribution function G(·),

the random variable G(w) follows a uniform distribution on [0, 1]. Finally, we remark that (8) is a

convex optimization problem. To see this, note that h(x) ≜
∫ 1
1−xG

−1(s) ds is a concave function
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because its derivative, h′(x) = G−1(1 − x), decreases in x. Therefore, the right-hand side of the

first constraint is a concave function of {qi} because it is the composition of h(·) with an affine

mapping.

Given a feasible solution {q(i|w)} to (3), the set {qi} with qi =
∫ 1
0 q(i|w)g(w)dw is feasible to (8)

and attains the same objective value. Therefore, (8) is a relaxation of (3). Conversely, analogous to

the two-receiver case (Section 4.3), the optimal aggregate allocation probabilities {q∗i }, along with

the binding participation constraints, characterize an optimal mechanism.10 Specifically, given an

optimal solution {q∗i } to (8), we can construct a public persuasion mechanism that obtains the

optimal value V CR. Therefore, the relaxation (8) is tight. We state the above in Proposition 4.10

and provide the proof in Appendix A.11.

Proposition 4.10. The optimal values of (3) and (8) are equal; that is, V̄ = V CR. Furthermore, let

{q∗(i|w)} be an optimal solution to (3). Then, {q∗i }, where q∗i =
∫ 1
0 q∗(i|w)g(w)dw, is an optimal

solution to (8). Conversely, if {q∗i } is an optimal solution to (8), then there exists an optimal

solution {q∗(i|w)} to (3) such that q∗i =
∫ 1
0 q∗(i|w)g(w)dw.

Let {q∗i } be an optimal solution to (8). In the following, we assume that q∗i > 0 for all i ∈ [n].

Otherwise, we can disregard those employers with q∗i = 0 with no loss of optimality.

4.4.1 Connection between the Optimal Dual Variables

In this section, we establish the equivalence of (3) and (8) from the dual point of view. Specifically,

we show that an optimal dual variable for one problem can be converted to an optimal dual variable

for the other.

Let q = (qi)i∈[n] ∈ Rn be a vector of allocation probabilities for the n employers, and let L(q,λ)

be the Lagrangian function in which we dualize the participation constraints in (8) with a dual

variable λ = (λk)k∈[n] ∈ Rn
+; that is:

L(q,λ) =
n∑

i=1

viqi +
∑
k∈[n]

λk ·

(∫ 1

1−
∑

i≤k qi

G−1(x) dx−
∑
i≤k

αiqi

)
.

Let q∗ = (q∗i )i∈[n] ∈ Rn
+ represent an optimal solution to (8) and λ∗ = (λ∗

k)k∈[n] ∈ Rn
+ an optimal

dual variable for the participation constraints. By the KKT conditions, q∗ solves the following

10Nevertheless, there are various ways to construct an optimal mechanism {q∗(i|w)}.

25



Lagrangian problem:

q∗ ∈ argmax
q∈Rn

+,
∑

i∈[n] qi≤1
L(q,λ∗) .

Since q∗i > 0 for any i ∈ [n] (i.e., we focus on non-disregarded employers) and
∑

i∈[n] q
∗
i < 1 by

Proposition 4.1, the first-order optimality condition yields

∂L

∂qi

(
q∗,λ∗) = vi +

∑
k≥i

λ∗
k ·
(
G−1

(
1−

∑
j≤k

q∗j

)
− αi

)
= 0. (9)

Proposition 4.11 establishes the connection between the optimal dual variables of (3) and (8),

demonstrating that each can be derived from the other.

Proposition 4.11. Suppose there exists an optimal solution {q∗i } to (8) such that q∗i > 0 for any

i ∈ [n] (i.e., no employer is disregarded). Then, the optimal Lagrangian dual variables for the

participation constraints in (3) and (8), denoted by µ∗ = (µ∗
i )i∈[n] ∈ Rn

+ and λ∗ = (λ∗
k)k∈[n] ∈ Rn

+,

respectively, are unique and satisfy µ∗
i =

∑
k≥i λ

∗
k for all i ∈ [n].

We prove Proposition 4.11 in Appendix A.12 by comparing the optimality condition (9) for (8)

with the optimality condition for (3) in Section 4.2. Since the dual variables λ∗
k are nonnegative,

Proposition 4.11 implies that the dual variables {µ∗
i } for (3) are decreasing. This aligns with Bullet

3 of Proposition 4.7 and intuitively follows from the fact that the envelope function h(w;µ∗) is

increasing and convex in w.

4.4.2 Structural Properties of Optimal Mechanism

In this section, we derive the structural properties of an optimal persuasion mechanism. Specifically,

we demonstrate that the information design problem decouples over subsets of employers, where

employers are partitioned based on the positivity of the optimal dual variable {λ∗
k}.

Let {q∗i } denote an optimal solution to (8) and assume that q∗i > 0 for any i ∈ [n]. Let

T ≜
{
k ∈ [n] : λ∗

k > 0
}

denote the set of positive entries of the optimal dual variable λ∗ for (8). Due to the complementary

slackness property, the participation constraint in (8) is binding with the top k employers if k ∈ T ;

that is, ∑
i≤k

αiq
∗
i = E

[
w · 1

[
w ≥ G−1

(
1−

∑
i≤k

q∗i

)]]
. (10)
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We note that λ∗
n = µ∗

n > 0 according to Bullet 1 of Proposition 4.7 and Proposition 4.11. Therefore,

n ∈ T , and thus set T is nonempty.

Suppose set T = {t1 < t2 < · · · < tm = n} contains m employers. These m employers partition

the n employers into m groups
{
Ti

}
i∈[m]

, where T1 = [t1] and Ti = [ti−1 + 1 : ti] for any i ∈ [2 :m].

Therefore,
⋃

i∈[m] Ti = [n] and Ti ∩ Tj = ∅ for any i ̸= j. Moreover, each group Ti contains exactly

one element from T , which is the largest element in Ti.

If a group Ti contains more than one employer (i.e., ti−1 + 1 < ti), then for any k ∈ [ti−1 + 1 :

ti − 1], we have the following:

µ∗
k =

∑
j≥k

λ∗
j = µ∗

ti =
vk − vti
αk − αti

, (11)

where the first equation follows from Proposition 4.11, the second equation follows from the fact

that λ∗
j = 0 for any j ∈ [ti−1 + 1 : ti − 1], and the third equation is derived by subtracting both

sides of (9) with i = ti from both sides of the same equation with i = k. Therefore, the optimal

dual variables for employers in the same group Ti all equal µ∗
ti . Furthermore, (11) implies that

the points {(vj , αj)}j∈Ti lie on a line, and the employers’ lines ℓj(w;µ
∗
j ) for any j ∈ Ti completely

overlap and coincide with this line.

In Lemma A.1 in the Appendix, we completely characterize the envelope function h(w;µ∗). Let

zi ≜ G−1
(
1−

∑ti
j=1 q

∗
j

)
for any i ∈ [m] and z0 = 0. Each group Ti of employers is associated with

an interval of state variable Ii ≜ [zi, zi−1]. Lemma A.1 demonstrates that the envelope function

h(w;µ∗), which is convex and piecewise linear, aligns with line ℓj(w;µj) on the interval w ∈ [zi, zi−1]

for any j ∈ Ti. Additionally, the function h(w;µ∗) intersects the x-axis at w = zm. We formally

state the above in Lemma 4.12, with the proof provided in Appendix A.12.3.

Lemma 4.12 (Characterization of h(w;µ∗)). Let {q∗j } be an optimal solution to (8), and assume

that q∗j > 0 for all j ∈ [n] (i.e., we drop ignorable employers j with q∗j = 0). Let µ∗ = (µ∗
j )j∈[n]

denote the optimal Lagrangian dual variable for the participation constraints in (3). The following

hold:

1. For any i ∈ [m] and employer j ∈ Ti, we have αj ∈
(
zi, zi−1

)
.

2. For any group Ti, the lines ℓj(w;µ
∗
j ) for j ∈ Ti fully overlap, and they pass though the points

(αj , vj) for any j ∈ Ti.

3. For any i ∈ [m] and employer j ∈ Ti, h(w;µ∗) = ℓj(w;µ
∗
j ) for any w ∈ [zi, zi−1] and

h(w;µ∗) > ℓj(w;µ
∗
j ) for any w ∈ [0, 1] \ [zi, zi−1].
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4. h(w;µ∗) is nonnegative if and only if w ≥ zm.

According to (5) and Lemma 4.12, a set of allocation probabilities {q(i|w)} is optimal to V LR(µ∗)

if and only if {q(i|w)} are nonnegative, no larger than one, and satisfy the following:

∑
j∈Ti

q(j|w) = 1, ∀w ∈ (zi, zi−1), i ∈ [m],

∑
j∈[n]

q(j|w) = 0, ∀w < zm.
(12)

In other words, an optimal solution of V LR(µ∗) allocates candidates with quality w ∈ Ii among the

employers in group Ti for any i ∈ [m].

Moreover, for any group Ti and employer k ∈ Ti, subtracting both sides of the first constraint

in (8) from both sides of (10) with k = ti−1, and noting that the first constraint in (8) is binding

with k = ti, yields the following:

∑
j∈[ti−1+1:k]

αjq
∗
j ≤ E

[
w · 1

[
G−1

(
1−

∑
j≤k

q∗j

)
≤ w < zi−1

]]
, ∀ k ∈ [ti−1 + 1 : ti − 1],

∑
j∈Ti

αjq
∗
j = E

[
w · 1

[
zi ≤ w < zi−1

]]
.

(13)

In addition, we have P[zi ≤ w < zi−1] =
∑

j∈Ti
q∗j . Analogous to the proof of Proposition 4.10, we

can allocate the state w ∈ [zi, zi−1] to the employers in group Ti, possibly in a randomized way,

so that each employer j ∈ Ti is allocated with a size q∗j of candidates, and the mean quality of

the allocation to employer j is αj (i.e., the participation constraint is tight). In other words, there

exists an optimal solution {q∗(j|w)} to V LR(µ∗), which satisfies∫
w∈Ii

q∗(j|w) g(w) dw = q∗j , ∀ j ∈ Ti, i ∈ [m],∫
w∈Ii

w · q∗(j|w) g(w) dw = αj

∫
w∈Ii

q∗(j|w) g(w) dw, ∀ j ∈ Ti, i ∈ [m].

(14)

According to (12), (14), and Bullet 2 of Lemma 4.5, such an allocation {q∗(j|w)} is an optimal to

(3). We summarize the above in Lemma 4.13.

Lemma 4.13 (Optimality Condition). An allocation probability {q(j|w)} is optimal to (3) if and only

if it allocates only to employers in the set Ti for any w ∈ Ii (i.e., (12) holds) and all participation

constraints in (3) are binding with {q(j|w)}. Moreover, let {q∗j } denote an optimal solution to (8).

We can construct an optimal solution {q∗(j|w)} to (3) such that the candidate joins each employer
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with probability q∗j (i.e., (14) holds).

According to Lemma 4.13, once we have solved an optimal solution {q∗i } and an optimal dual

variable λ∗ of (8), and obtained the partition {Ti}i∈[m] of employers, the design problem decouples

over groups. For each group Ti, the optimal mechanism allocates the state w ∈ Ii to the employers

in group Ti in a way that ensures that the participation constraints are binding. When the group

contains only one employer, we simply allocate the entire interval Ii to the employer. When it

contains multiple employers, the allocation needs to be conducted more carefully. Analogous to

the two-receiver case (Section 4.3.2), there are multiple ways to construct an optimal mechanism.

Specifically, based on (13), we can construct an optimal solution iteratively. Given that we have

allocated a size q∗j of candidates from interval Ii with a mean quality of αj to each employer j of

the first k employers in group Ti, we can also allocate a size q∗j′ of candidates from the remaining

candidates in interval Ii with a mean quality of αj′ to employer j′, where j′ denote the index of the

(k+1)-th candidate in group Ti. Repeat this process until we reach the last employer in group Ti,

which is employer ti. The remaining candidates, with a size of q∗ti and a mean quality of αti , can

then be allocated to the last employer.

In Section 4.4.3, we specify a particular allocation approach at each iteration step to obtain an

optimal solution {q∗(j|w)} to (3) that has a monotone structure.

4.4.3 Constructing an Optimal Mechanism with a Monotone Structure

In this section, we construct an optimal persuasion mechanism {q∗(j|w)} iteratively that addition-

ally satisfies a monotone property, as defined in Definition 4.1. Specifically, for any w ≥ w′, the

distribution q∗(·|w) will first-order stochastically dominate the distribution q∗(·|w′). Therefore, a

student with a higher quality w is more likely to be in a better place, which is desirable in practice.

Definition 4.1 (Monotone Structure). An optimal persuasion mechanism {q∗(j|w)} satisfies a mono-

tone property if, for any w ≥ w′, the distribution q∗(·|w) first-order stochastically dominates the

distribution q∗(·|w′); in other words, we have
∑

k≤i q
∗(k|w) ≥

∑
k≤i q

∗(k|w′) for any i ∈ [n].11

The monotone property automatically holds for two qualities w and w′ from different intervals.

Suppose w ∈ Ii and w′ ∈ Ij with i < j. Since max Ti < min Tj , a candidate with quality w receives

a better job for sure, which implies first-order stochastic dominance. Therefore, we only need to

ensure the monotone structure for qualities within the same interval.

11Note that an offer from a lower-indexed employer provides a higher payoff to the candidate by Assumption 2.1.
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Algorithm 1 presents a way to construct an optimal mechanism {q(j|w)} for j ∈ Ti iteratively.

The distribution q(·|w) from Algorithm 1 is first-order stochastically increasing in w; additionally,

q(j|w) is piecewise constant on w ∈ Ii for any j ∈ Ti.

Algorithm 1: Optimal Persuasion Mechanism with a Monotone Structure

Input: Let {q∗i } be an optimal solution to (8).
Initialization: Take bti−1 = zi−1 and q≤ti−1(w) = 0 for any w ∈ Ii.

1 for k ∈ Ti = [ti−1 + 1 : ti − 1] do
2 Identify two values bk ∈

[
zi, bk−1

]
and ρk ∈ [0, 1] to ensure that (14) holds for employer

k with q(k|w) = ρk · (1− q≤k−1(w)) for w ∈ [bk, zi−1] and q(k|w) = 0 for w < bk;
3 Let q≤k(w) = q≤k−1(w) + q(k|w) for any w ∈ Ii.

4 end
5 Let q(ti|w) = 1− q≤ti−1(w) for any w ∈ Ii and take bti = zi.

In Algorithm 1, q≤k(w) =
∑

j≤k q(j|w) represents the probability that a candidate with quality

w receives an offer from one of the top k employers. Note that for any k ≤ ti−1, q≤k(w) = 0 for

w ∈ Ii. In each iteration, we allocate a ratio ρk of the remaining candidates whose quality is at

least bk to employer k. The values of ρk and bk are selected so the candidate joins employer k with

a probability of q∗k, and the expected quality of the candidate conditional on her joining employer

k is αk (i.e., (14) holds for employer k).

We note that the constructed sequence {bk}k∈Ti
decreases and partitions the interval Ii into

subintervals Iik ≜ [bk, bk−1] for k ∈ Ti. Additionally, the probabilities q(j|w) equal a constant qj(k)

on each subinterval w ∈ Iik, where the values of qj(k) are specified as follows:

q(j|w) = qj(k) = 0, ∀ k ≥ j + 1, w ∈ Iik ,

q(j|w) = qj(k) = ρj ·
(
1− q≤j−1(w)

)
= ρj ·

j−1∏
ℓ=k

(
1− ρℓ

)
, ∀ k ∈ [ti−1 + 1 : j], w ∈ Iik .

Proposition 4.14 demonstrates that the values of {ρk} and {bk} in Algorithm 1 exist, and the

allocation {q(j|w)} returned by Algorithm 1 is optimal to (3) and satisfies the first-order stochastic

increasing property.

Proposition 4.14. The allocation {q(j|w)} returned by Algorithm 1 is optimal to (3) and satisfies

the first-order stochastic increasing property.

We prove Proposition 4.14 and demonstrate that the values of {ρk} and {bk} can be easily

identified in Appendix A.13. Note that when a group Ti contains two employers, the allocation

{q(j|w)} returned by Algorithm 1 concurs with the randomized mechanism with a monotone struc-
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ture described in Section 4.3.2 for the two-receiver case.

Finally, we present two useful properties of the optimal solutions of (8) as established in Can-

dogan (2022). Specifically, there exists an optimal solution {q∗k} such that each group Ti contains

at most two employers with a positive probability of q∗k. Additionally, the optimal solution of

(8) is unique if no three points of {(αi, vi)}i∈[n] are collinear. We state these two properties in

Proposition 4.15.

Proposition 4.15. The optimal solution of (8) satisfies the following two properties.

1. (Lemma 4 of Candogan 2022) Let {λ∗
k} denote an optimal dual variable associated with the

participation constraints in (8) and {Ti} denote the corresponding partition of the n employers

as described in Section 4.4.2. There exists an optimal solution {q∗k} to (8) such that |Ti∩P | ≤ 2

for any i, where P ≜ {k ∈ [n] : q∗k > 0} denote the set of positive entries of {q∗k}. In other

words, each set Ti contains at most two employers with a positive probability of q∗k.

2. (Appendix D of Candogan 2022) Problem (8) has a unique optimal solution {q∗k} if no three

points of {(αi, vi)}i∈[n] are collinear.

We prove Proposition 4.15 in Appendix A.14 based on results established from the dual analysis,

which significantly simplifies the proof and makes both properties intuitive. For the first property,

suppose a group Ti contains more than two employers with a positive probability. Since all the

points {(αj , vj)}j∈Ti are collinear according to Bullet 2 of Lemma 4.12, we can reallocate the

probabilities of two employers that are apart to an employer with a positive probability in between

until we drain the probability of one of the two employers, without changing the objective value.

For the second property, since no three points of {(αi, vi)}i∈[n] are collinear, any group Ti contains

at most two employers with a positive probability according to Bullet 2 of Lemma 4.12. Moreover,

the values of these two probabilities are uniquely determined by two linear equations analogous to

(7). We provide more details in Appendix A.14.

Proposition 4.15 implies that the information design problem in the general case can be decom-

posed into design problems with two receivers, one for each group Ti. By applying the deterministic

mechanism with a double-interval structure as described in Section 4.3.2 to each group Ti, we obtain

the deterministic persuasion mechanism described in Candogan (2022).
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5 Conclusions

We have considered a Bayesian persuasion problem faced by a school advisor (the sender) who

strategically discloses information to persuade n employers (the receivers) to extend offers. We

demonstrate that as long as receivers take binary actions (extending an offer or not), and the

sender has a known preference among the receivers and can accept only one offer, public persuasion

is optimal in a broad sense—it is so regardless of the receivers’ communication method. As a

result, the sender eliminates any room for the receivers to communicate to infer further about the

candidate, in her own interest. Moreover, the optimal public persuasion mechanism can be derived

from the first-best relaxation problem that imposes only participation constraints. We are hopeful

that such a strong result can be extended to more general settings, which could be an interesting

direction for future research.

We next investigate a specific setting in which the state variable is one-dimensional, and the

receivers’ utility functions are linear (therefore, a receiver cares only about the candidate’s mean

quality). We focus on efficient computation of the optimal (public) persuasion mechanism. We

obtain the optimal mechanism in closed form for the two-receiver case based on the optimality

condition derived from the dual of the first-best relaxation problem. For the general case, although

the optimal mechanism can be derived from a convex optimization analogous to that of Candogan

(2022), we establish the optimal mechanism and provide new insights and a better understanding

of it based on a dual approach.
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A Proofs

A.1 Proof of Lemma 3.1

Fix any information disclosure mechanism f(·|w). For any i ∈ [n], let

q(i|w) = P
[
a∗i = 1 and a∗j = 0, ∀ j < i | w

]
=

∫
s

∫
c
δi(si, ci)Πj<i (1− δj(sj , cj)) c(c|s)f(s|w)dcds.

denote the probability that employer i extends an offer and the candidate accepts it under the
employers’ equilibrium strategies when the candidate’s characteristics are w. The random binary
variable a∗i ∈ {0, 1} represents employer i’s action of extending an offer in the equilibrium of the
game induced by the mechanism f(·|w). Note that the candidate will accept employer i’s offer if
and only if none of the employers j < i extends an offer.

We first prove that the participation constraint in (2) holds; that is,∫
w∈Ω

ui(w) q(i|w) dG(w) = E
[
ui(w) · 1[a∗i = 1 and a∗j = 0, ∀ j < i]

]
≥ 0.

To see this, note that

E
[
ui(w) · 1[a∗i = 1 and a∗j = 0, ∀ j < i] | ci, si

]
=E
[
1[a∗i = 1] | ci, si

]
· E
[
ui(w) · 1[a∗j = 0, ∀ j < i] | ci, si

]
≥ 0,

where the equation follows from the fact that the action a∗i is independent of a
∗
j and w conditional on

the signal-communication-information pair (ci, si), and the inequality follows from the optimality of
the employer’s equilibrium strategy—that is, employer i extends an offer only if doing so provides
nonnegative utility to him. Taking expectation over (ci, si) on both sides of the above inequality
yields the desired result.

For the second constraint, note that for any w ∈ Ω, we have∑
i∈[n]

q(i|w) =
∑
i∈[n]

P [a∗i = 1 for some i ∈ [n] | w] ≤ 1.

Finally, the expected payoff of the mechanism f(·|w) can be expressed as

n∑
i=1

vi ·
∫
w∈Ω

q(i|w) · dG(w),

which is the objective function of (2). Since {q(i|w)} is feasible to (2) given any mechanism f(·|w),
we have V ∗ ≤ V̄ .

A.2 Proof of Lemma 3.2

Let {q∗(i|w)} denote an optimal solution to (2). We first show that for any two employers j and k
with j < k, we have ∫

w∈Ω
uj(w) q

∗(k|w) dG(w) < 0. (15)
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We prove this by contradiction. Assume that there exists j and k with j < k such that∫
w∈Ω

uj(w) q
∗(k|w) dG(w) ≥ 0.

Consider the new allocation rule q̃(i|w) defined as:

q̃(i|w) =


q∗(j|w) + q∗(k|w) if i = j,

0 if i = k,

q∗(i|w) if i /∈ {j, k}.

{q̃(i|w)} is feasible to (2), and because vj > vk, {q̃(i|w)} achieves a strictly larger objective value
than {q∗(i|w)}. This contradicts the fact that {q∗(i|w)} is optimal to (2). Thus, our assumption
fails.

Since a public persuasion mechanism leaves no payoff-related information for the receivers to
communicate, there exists an equilibrium where employers make decisions based only on the public
signal and ignore potential communication among themselves. We now show that it is an equilib-
rium for each employer i ∈ [n] to extend an offer only upon receiving the signal s = i. To do so,
suppose all employers other than employer i follow this strategy; we verify that it is optimal for
employer i to do the same.

First, suppose employer i receives the signal s = i. The expected payoff for extending an offer
is nonnegative because∫

w∈Ω
ui(w) dG

(
w|s = i

)
=

1∫
w q∗(i|w) dG(w)

∫
w∈Ω

ui(w) q
∗(i|w) dG(w) ≥ 0,

where dG
(
w|s = i

)
= q∗(i|w) dG(w)∫

w q∗(i|w) dG(w)
denotes the posterior belief of w given s = i, and the inequality

follows from the participation constraint in (2). Therefore, it is optimal for the employer i to extend
an offer.

Second, suppose employer i receives the signal s = k with k > i. The expected payoff for
extending an offer is negative because∫

w∈Ω
ui(w) dG

(
w|s = k

)
=

1∫
w q∗(k|w) dG(w)

∫
w∈Ω

ui(w) q
∗(k|w) dG(w) < 0,

where the inequality follows from (15). Therefore, employer i will not extend an offer.
Finally, suppose employer i receives the signal s = j with j < i. Since the candidate will never

accept employer i’s offer (because employer j will extend an offer), employer i is indifferent between
extending an offer or not.

Note that the expected payoff for the school advisor is V̄ under this equilibrium. Therefore, the
public mechanism f∗(·|w) is optimal to (1).

A.3 Proof of Proposition 4.1

Since the threshold value αi is strictly decreasing in the employer index i by Assumption 4.3,
the probability of receiving an offer, expressed as

∑
i∈[n]

∫ 1
0 q(i|w)g(w)dw, is maximized when the

sender targets only employer n with the lowest threshold value αn; that is, q(i|w) = 0 for any i ̸= n
and w ∈ [0, 1]. This is because, given any feasible solution {q(i|w)} of (3), we can construct a new
solution {q̃(i|w)} with q̃(n|w) =

∑
i∈[n] q(i|w) and q̃(i|w) = 0 for any i < n, which is feasible to
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(3) and attains the same probability of receiving an offer. On the other hand, if {q(i|w)} assigns
a strictly positive probability to any employer i < n, the participation constraint of employer n
is not binding under the new construction {q̃(i|w)}. Given Assumption 4.3, we can allocate more
mass to employer n without violating its participation constraint.

On the other hand, if the sender targets only employer n, the probability is maximized with
q(n|w) = 1 for any w ≥ zn and q(n|w) = 0 otherwise, resulting in a probability of P(w ≥ zn).

Finally, we note that zn > 0 because w0 < αn by Assumption 4.3. Therefore, P(w ≥ zn) < 1.

A.4 Proof of Proposition 4.2

Let {q(i|w)} be a feasible solution to (3) and suppose that the participation constraint for an
employer j holds with strict inequality; that is,∫ 1

0
w · q(j|w) g(w) dw > αj

∫ 1

0
q(j|w) g(w).

Since
∑

i∈[n]
∫ 1
0 q(i|w) g(w) dw < 1 by Proposition 4.1, we can allocate more mass to employer j so

that
∫ 1
0 q(j|w) g(w) dw strictly increases, q(i|w) remains unchanged for any i ̸= j and w ∈ [0, 1],

and the participation constraint for employer j still holds. This increases the objective value and
implies that {q(i|w)} is suboptimal.

A.5 Proof of Proposition 4.3

Let {q(i|w)} be a feasible solution of (3), and define z ≜ sup
{
z ∈ [0, 1] :

∑
i∈[n]

∫ z
0 q(i|w) dw = 0

}
as the (essential) lower bound on the support of {q(i|w)}. If

∑
i∈[n]

∫ 1
z q(i|w)dw < P(w ≥ z), there

exists a point z̃ ∈ (z, 1) such that

∑
i∈[n]

∫ z̃

z
q(i|w) dw =

∑
i∈[n]

∫ 1

z̃
(1− q(i|w)) dw > 0.

We can create a new feasible solution {q̃(i|w)} from {q(i|w)} by transporting the mass of {q(i|w)}
below z̃ to fill the “unoccupied” area above z̃; therefore,

∑
i∈[n]

∫ 1
z̃ q̃(i|w)dw = P(w ≥ z̃) and∑

i∈[n]
∫ z̃
0 q̃(i|w)dw = 0. The two feasible solutions {q̃(i|w)} and {q(i|w)} have the same objective

value because, by transporting,
∫ 1
0 q(i|w)dw =

∫ 1
0 q̃(i|w)dw for any i ∈ [n].

On the other hand, since {q(i|w)} satisfies the participation constraints and we have shifted a
positive mass of {q(i|w)} from below z̃ to above z̃, the participation constraint for some employer
i ∈ [n] must hold with strict inequality with {q̃(i|w)}. According to Proposition 4.2, {q̃(i|w)}, and
thus {q(i|w)}, must be suboptimal.

A.6 Proof of Lemma 4.5

Since the thresholds αi are smaller than one by Assumption 4.3, it is straightforward to create a
feasible solution to (3) where all participation constraints in (3) are satisfied with strict inequality.
Therefore, strong duality holds and an optimal dual variable µ∗ exists according to Theorem 1 in
Section 8.6 of Luenberger (1997).

Once strong duality is established, Bullet 2 follows from the optimality condition (Proposition
6.1.5 in Bertsekas 2016) and Proposition 4.2, which states that the participation constraints are
binding with any optimal solution of (3).
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A.7 Proof of Proposition 4.6

Let {q∗(i|w)} be an optimal solution to (3) such that
∫ 1
0 q∗(i|w)dw > 0. Since {q∗(i|w)} is also

optimal to V LR(µ∗) by Lemma 4.5 Bullet 2, the line of employer i, ℓi(w;µ
∗
i ), is a component of the

envelope function h̄(w;µ∗). This implies that there exist constants b, b̄ ∈ [0, 1] such that h̄(w;µ∗) =
ℓi(w;µ

∗
i ) for w ∈ [b, b̄] and h̄(w;µ∗) > ℓi(w;µ

∗
i ) otherwise. We now show that 0 < b < α1 < b̄ ≤ 1.

First, note that q∗(i|w) = 0 for any w ∈ [0, b) ∪ (b̄, 1] because line ℓi(w;µ
∗
i ) is strictly be-

low h̄(w;µ∗) in this region. This implies that α1 ∈ (b1, b2) because otherwise, the participation
constraint of employer i cannot be binding, which contradicts Lemma 4.5 Bullet 2.

We next prove b > 0 by contradiction. If b = 0, then for any w > 0, we have

h
(
w;µ∗) ≥ ℓi

(
w;µ∗

i

)
> ℓi

(
0;µ∗

i

)
= h̄

(
0;µ∗) ≥ 0,

where the first inequality follows from the definition of the envelope function h(w;µ∗) and the second
inequality from the fact that µ∗

i > 0 by Proposition 4.7 Bullet 1. Therefore,
∑

i∈[n] q
∗(i|w) = 1 for

any w > 0 according to (5), which contradicts Proposition 4.3.

A.8 Proof of Proposition 4.7

Proof of Bullet 1 We prove µ∗
i > 0 for any i ∈ [n] by contradiction. If µ∗

i = 0 for some i ∈ [n],
then for any w ∈ [0, 1], we have h(w;µ∗) ≥ ℓi(w;µ

∗
i ) = vi > 0. Consequently,

∑
i∈[n] q

∗(i|w) = 1
for any w ∈ [0, 1] according to (5), which contradicts Proposition 4.3.

Proof of Bullet 2 Since µ∗
i > 0 for any i ∈ [n], the envelope function h(w;µ∗) is strictly increasing.

Let z∗ ∈ (0, 1) be the root of h(w;µ∗) such that h(z∗;µ∗) = 0, and let {q∗(i|w)} be an optimal
solution to (3). Since {q∗(i|w)} ∈ QLR(µ∗) by Lemma 4.5, it follows that

∑
i∈[n] q

∗(i|w) = 1 for
any w > z∗ and q∗(i|w) = 0 for any i ∈ [n] and w < z∗ according to (5).

Proof of Bullet 3 From Proposition 4.6, the lines of employers in the set P are components of
the envelope function h̄(w;µ∗). Since h̄(w;µ∗) is convex and piecewise linear, and the slope of each
component equals the dual variable µ∗

i of the corresponding employer, {µ∗
i }i∈P are decreasing with

the employer index i.

A.9 Proof of Proposition 4.8

Bullets 1 and 2 follow from Proposition 4.1.

Proof of Bullet 3 In the following, we prove that if the cutoff value z satisfies z < z̄1 if α2 < z̄1,
then we have z ∈

[
z2, z1

]
.

For ease of notation, we drop the dependence on the mechanism M by letting q1 = q1(M) and
q2 = q2(M). If the mechanism has a cutoff structure with a threshold value of z, the following two
linear equations must hold:

q1 + q2 = P[w ≥ z],

α1q1 + α2q2 = (q1 + q2) · E[w|w ≥ z].
(16)

The first equation follows from the fact that the candidate receives an offer (from either employer
1 or 2) if and only if w ≥ z, and the second equation follows from the cutoff structure, the law of
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total expectation

E[w|w ≥ z] =
q1

q1 + q2
· E[w|s = 1] +

q2
q1 + q2

· E[w|s = 2],

and the fact that E[w|s = i] = αi by the binding participation constraints for mechanisms in the
set M. The two equations in (16) determine the values of q1 and q2 as

q1 = P[w ≥ z] · E[w|w ≥ z]− α2

α1 − α2
,

q2 = P[w ≥ z] · α1 − E[w|w ≥ z]

α1 − α2
.

(17)

We now validate that z ∈ [z2, z1].
First, we show that z ≥ z2. If z < z2, then E[w|w ≥ z] < E[w|w ≥ z2] = α2, which implies

q1 < 0. Therefore, we must have z ≥ z2.
Next, we show that z ≤ z̄1. If z > z̄1, then E[w|w ≥ z] > E[w|w ≥ z̄1] = α1, which implies

q2 < 0. Therefore, we have z ≤ z̄1.
Finally, we show that z ≤ z1 ≤ z̄1. If z̄1 ≤ α2, then z1 = z̄1 and we are done. Now, suppose

z1 < α2 < z̄1. In this case, it suffices to show that z /∈ (z1, z̄1). We prove that if z ∈ (z1, z̄1), then
q1 > q1(M1) = P[w ≥ z̄1], which contradicts Bullet 1. Specifically, let q1(z) and q2(z) denote the
values of q1 and q2 as a function of the threshold z. From (17) we have12

q1(z̄1) = P[w ≥ z̄1], q2(z̄1) = 0

and
q1(z1) = P[w ≥ z̄1], q2(z1) = P[z1 ≤ w ≤ z̄1].

From (17), we can express q1(z) as

q1(z) =
1

α1 − α2

∫ 1

z
(w − α2)g(w)dw.

Since the derivative is
dq1(z)

dz
=

α2 − z

α1 − α2
· g(z),

q1(z) is increasing in z ∈ [z1, α2] and decreasing in z ∈ [α2, z̄1]. Therefore, q1(z) > P[w ≥ z̄1] for
any z ∈ (z1, z̄1), which contradicts Proposition 4.8 Bullet 1.

Combining the above three steps yields z ∈ [z2, z1].

Proof of Bullet 4 If such a mechanismM exists, we must have q1 ≜ q1(M) = P[w ≥ z]·E[w|w≥z]−α2

α1−α2

and q2 ≜ q2(M) = P[w ≥ z] · α1−E[w|w≥z]
α1−α2

by (17). Since z ∈ [z2, z1], we have E[w|w ≥ z] ∈ [α2, α1],
implying that q1 ≥ 0, q2 ≥ 0, and q2 ≤ P[w ≥ z] ≤ P[w ≥ z2]. Additionally, the proof of Bullet 3
indicates that q1 ≤ P[w ≥ z̄1] ≤ P[w ≥ z] when z ∈ [z2, z1].

A mechanism M that meets the criteria of Bullet 4 must satisfy the following:

1. q(1|w) + q(2|w) = 1 for any w ≥ z, and q(1|w) = q(2|w) = 0 for any w < z;

2. P[s = 1] = q1, and P[s = 2] = q2;

12This is because E[w|w ≥ z̄1] = α1 and E[w|w ≥ z1] =
P[w≥z̄1]
P[w≥z1]

α1 +
P[z1≤w≤z̄1]

P[w≥z1]
α2.
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3. E[w|s = 1] = α1, E[w|s = 2] = α2, and E[w|s = ∅] < α2.

A feasible mechanism M ∈ M can be constructed in multiple ways. For example, we can create a
deterministic persuasion mechanism such that q(1|w) = 1 for w ∈ T , q(2|w) = 1 for w ∈ [z, 1] \ T ,
and q(∅|w) = 1 for w < z, for some subset T ⊆ [z, 1]. To satisfy the requirements in Bullet 4, the
subset T ⊆ [z, 1] must satisfy the following conditions:

1. P[w ∈ T ] = q1, and P[w ∈ [z, 1] \ T ] = q2;

2. E[w|w ∈ T ] = α1, E[w|w ∈ [z, 1] \ T ] = α2, and E[w|w < z] < α2.

There are, again, various ways to construct a feasible set T . For instance, set T can be an interval
[b, b̄] ⊆ [z̄1, 1] that includes the point α1 and satisfies P[b ≤ w ≤ b̄] = q1 and E[w|b ≤ w ≤ b̄] = α1.
A feasible interval [b, b̄] exists because E[w|w ≥ z̄1] = α1 and P[w ≥ z̄1] ≥ q1. In addition, we have
P[w ∈ [z, 1] \ T ] = q2 and E[w|w ∈ [z, 1] \ T ] = α2 because the values of q1 and q2 satisfy (16).
Finally, we have E[w|w < z] ≤ E[w|w < z1] < α2, where the second inequality follows from the fact
that z1 = z̄1 ≤ α2 when z̄1 ≤ α2 and E[w|w < z1] < E[w|z1 ≤ w < z̄1] = α2 when z̄1 > α2.

A.10 Proof of Lemma 4.9

In this proof, we identify a set of dual variables µ ∈ Rn
+, which, along with the proposed mechanism

in Lemma 4.9, satisfies Lemma 4.5 Bullet 2. This indicates that the mechanism is optimal to (3),
and µ is an optimal dual variable.

Proof of Bullet 1 Suppose v1 ≤ v2 · α1−z2
α2−z2

, which implies that the point (α1, v1) lies below line
η2. We construct the employers’ associated lines ℓ1 and ℓ2 as follows.

Let line ℓ2 coincide with line η2 by taking the dual variable µ2 = v2/(α2 − z2). Let line ℓ1
lie below line ℓ2 for w ∈ [z2, 1]. For example, this can be achieved by taking the dual variable
µ1 = v1/(α1 − z2). The two lines ℓ1 and ℓ2 are illustrated in Figure 3(a). Since line ℓ2 dominates
line ℓ1, an optimal solution to the Lagrangian V LR(µ) with µ = (µ1, µ2) will never recommend
the candidate to employer 1, regardless of the candidate’s characteristics w. It is easy to verify
that the mechanism M2 and the dual variable µ = (µ1, µ2) satisfy Lemma 4.5 Bullet 2. Therefore,
mechanism M2 is optimal to (3), and µ = (µ1, µ2) is an optimal dual variable.

Proof of Bullet 2 Suppose v1 ≥ v2 · α1−z1
α2−z1

, which implies that the point (α1, v1) lies above the
line η1. We construct the employers’ associated lines ℓ1 and ℓ2 in the following two cases: when
z̄1 ≤ α2 and when z̄1 > α2.

1. z1 = z̄1 ≤ α2: Let line ℓ1 be the line passing through the points (z1, 0) and (α1, v1) by taking

the dual variable µ1 = v1/(α1 − z1). Let line ℓ2 lie below line ℓ1 for w ∈ [z1, 1]. For example,

this can be achieved by taking µ2 = v2/(α2 − z1) (in which case line ℓ2 coincides with line η1),

because the point (α2, v2) lies below line ℓ1. The lines ℓ1 and ℓ2 are illustrated in Figure 3(c).

2. z1 < α2 < z̄1: Let line ℓ2 coincide with line η1 by taking the dual variable µ2 = v2/(α2 − z1).

Let line ℓ1 be the line passing through the points (z̄1,
v2

α2−z1
(z̄1 − α2) + v2) and (α1, v1) by

taking the dual variable µ1 =
v2

α2−z1
(z̄1−α2)+v2−v1

z̄1−α1
. It is easy to verify that line ℓ1 intersects

line ℓ2 at w = z̄1 and µ1 > µ2.
13 After the setup, line ℓ1 is above line ℓ2 for w ∈ [z̄1, 1] and

line ℓ2 is above line ℓ1 for w ∈ [z1, z̄1]. The lines ℓ1 and ℓ2 are illustrated in Figure 3(d).

13Intuitively, µ1 > µ2 because the point (α1, v1) lies above line η1.
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It is easy to verify that the mechanism M1 and the dual variable µ = (µ1, µ2) satisfy Lemma 4.5
Bullet 2 in both cases. As a result, mechanism M1 is optimal to (3), and µ = (µ1, µ2) is an optimal
dual variable.

Proof of Bullet 3 Suppose v1 ∈
(
v2 · α1−z2

α2−z2
, v2 · α1−z1

α2−z1

)
, which implies that the point (α1, v1) lies

between the two lines η1 and η2. We define the dual variables µ1 = µ2 = v1−v2
α1−α2

so that the two
lines ℓ1 and ℓ2 overlap and pass through (α2, v2) and (α1, v1). These lines intersect the x-axis at
w = z∗ ∈ [z2, z1], as illustrated in Figure 3(b).

It is easy to verify that any mechanism M ∈ M feasible to Lemma 4.9 Bullet 3, together with
the dual variable µ = (µ1, µ2), satisfies Bullet 2 of Lemma 4.5. Therefore, such a mechanism M is
optimal to (3), and µ = (µ1, µ2) is an optimal dual variable. The existence of a mechanism M ∈ M
meeting Bullet 3 of Lemma 4.9 is confirmed by Bullet 4 of Proposition 4.8.
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(a) (α1, v1) is below line η2.
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(d) (α1, v1) is above line η1 – case 2.

Figure 3: Visualization of two employers’ associated lines.

A.11 Proof of Proposition 4.10

Step One: Proving V̄ ≤ V CR We first prove that (8) is a relaxation of (3); therefore, V̄ ≤ V CR.
Specifically, let {q(i|w)} be a feasible solution to (3). Define qi =

∫ 1
0 q(i|w)g(w)dw for any i ∈ [n].

We show that {qi} is feasible to (8). This, together with the fact that {q(i|w)} and {qi} yield the
same objective value, indicates that (8) is a relaxation of (3).
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To show that {qi} is feasible to (8), first, note that qi ≥ 0 for any i ∈ [n] because q(i|w) ≥ 0 for
any i ∈ [n] and w ∈ [0, 1]. Second,

∑
i∈[n]

qi =
∑
i∈[n]

∫ 1

0
q(i|w) g(w) dw ≤

∫ 1

0
g(w) dw = 1,

where the inequality follows from the fact that
∑

i∈[n] q(i|w) ≤ 1 for any w ∈ [0, 1].
Finally, we show {qi} is feasible to the first constraint in (8). To do so, let q≤k(w) =

∑
i≤k q(i|w)

denote the probability that a candidate with characteristics w receives an offer from one the top k
employers. Since {q(i|w)} is a feasible solution to (3),

αi

∫ 1

0
q(i|w) g(w) dw ≤

∫ 1

0
w · q(i|w) g(w) dw.

Summing over i ≤ k on both sides gives

∑
i≤k

αiqi ≤
∫ 1

0
w · q≤k(w) g(w) dw

≤
∫ 1

G−1
(
1−

∑
i≤k qi

)w · g(w) dw

=E

w · 1
[
G(w) ≥ 1−

∑
i≤k

qi

]
=
∑
i≤k

qi · E

w∣∣∣∣∣G(w) ≥ 1−
∑
i≤k

qi


where the second inequality follows from the fact that

∫ 1
0 q≤k(w) g(w) dw =

∑
i≤k qk, and that the

integration is maximized by taking q≤k(w) = 1 for any w ≥ G−1
(
1 −

∑
i≤k qi

)
and q≤k(w) = 0

otherwise.

Step Two: Proving V CR ≤ V̄ We next prove that V CR ≤ V̄ . Specifically, we show that for any
feasible solution {qi} to (8), there exists a feasible solution {q(i|w)} to (3) with the same objective
value as {qi}, thereby implying V CR ≤ V̄ .

Let {qi} be feasible to (8). Since the participation condition (i.e., the first constraint) of (8)
holds for k = 1, we can find a portion q1 of candidates whose mean quality just meets the threshold
value α1 of employer 1. In other words, we can find a function q(1|w) ≥ 0 satisfying∫ 1

0
q(1|w) g(w) dw = q1,∫ 1

0
w · q(1|w) g(w) dw = α1

∫ 1

0
q(1|w) g(w) dw.

Now consider the remaining portion of candidates. Since the participation condition of (8) holds
for k = 2, within the remaining portion of candidates, we can find a portion q2 of candidates whose
mean quality just meets the threshold value α2 of employer 2. In other words, we can find a function
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q(2|w) ≥ 0 satisfying ∫ 1

0
q(2|w) g(w) dw = q2,∫ 1

0
w · q(2|w) g(w) dw = α2

∫ 1

0
q(2|w) g(w) dw,

q(2|w) ≤ 1− q(1|w), ∀w ∈ [0, 1].

Repeating the process, we can find qualified portions for all employers, resulting in a set of {q(i|w)}
that is feasible to (3). Moreover, by construction, {q(i|w)} and {qi} have the same objective value.

Step Three: Wrap-Up Combining the two steps, we have V̄ = V CR; that is, the optimal values
of (3) and (8) are equal. Moreover, let {q∗(i|w)} be an optimal solution to (3), and let q∗i =∫ 1
0 q∗(i|w)g(w)dw. Since {q∗i } is feasible to (8) and attains the same objective value as {q∗(i|w)}
by Step One, {q∗i } is optimal to (8). Conversely, if {q∗i } is an optimal solution to (8), then by Step

Two, we can construct a feasible solution {q∗(i|w)} to (3) satisfying q∗i =
∫ 1
0 q∗(i|w)g(w)dw. This

solution has an objective value V CR = V̄ , thus is optimal to (3).

A.12 Proof of Proposition 4.11

In the following, we first prove that the optimal Lagrangian dual variable µ∗ = (µ∗
i )i∈[n] for (3) is

unique (Step One). We then show that if λ∗ = (λ∗
k)k∈[n] is an optimal Lagrangian dual variable

for (8), then {µi}, with µi =
∑

k≥i λ
∗
k, is an optimal Lagrangian dual variable for (3) (Step Two).

Finally, these two steps indicate the uniqueness of the optimal Lagrangian dual variable λ∗.

A.12.1 Step One: Uniqueness of µ∗

In this section, we prove by contradiction that the optimal Lagrangian dual variable µ∗ = (µ∗
i )i∈[n]

of (3) is unique. Suppose, instead, that (3) has two different optimal dual variables µ = (µi)i∈[n]
and µ̃ = (µ̃i)i∈[n]. Let i ≜ max{j ∈ [n] : µj ̸= µ̃j} denote the largest index where the two optimal
dual variables differ. Without loss of generality, assume µi > µ̃i > 0, where the second inequality
follows from Proposition 4.7 Bullet 1.

Let {q∗(i|w)} be an optimal solution to (3) such that
∫ 1
0 q∗(i|w)g(w)dw = q∗i > 0 (whose

existence is validated by Proposition 4.10). According to Lemma 4.5 Bullet 2, we have {q∗(i|w)} ∈
QLR(µ) and {q∗(i|w)} ∈ QLR(µ̃). However, in the following, we will show that such an optimal
solution {q∗(i|w)} does not exist.

First, let ℓj(w) ≜ vj + µj(w − αj) denote the lines of employers j ∈ [n] using the optimal dual
variable µ = (µj)j∈[n], and

h̄(w) ≜ max
j∈[n]

{
ℓj(w)

}+
= max

j∈[n]

{
vj + µj

(
w − αj

)}+

denote the envelope function, which is convex and piecewise-linear on w ∈ [0, 1].
Since q∗i > 0, there exists constants b1 and b2 satisfying 0 < b1 < αi < b2 ≤ 1, such that

h̄(w) = ℓi(w) for w ∈
[
b1, b2

]
and h̄(w) > ℓi(w) otherwise, according to Proposition 4.6. Since the

envelope function h̄(w) is convex and piecewise-linear, and line ℓi(w) is dominated for any w < b1,
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all the lines ℓj(w) with j < i are also dominated for any w < b1. This implies that∑
j≤i

q∗(j|w) = 0, ∀w < b1. (18)

Next, let ℓ̃j(w) ≜ vj + µ̃j(w − αj) denote the lines of employers j ∈ [n] using the optimal dual
variable µ̃ = (µ̃j)j∈[n], and

h̃(w) ≜ max
j∈[n]

{
ℓ̃j(w)

}+
= max

j∈[n]

{
vj + µ̃j

(
w − αj

)}+

denote the envelope function, which is convex and piecewise-linear on w ∈ [0, 1].
Analogously, since q∗i > 0, there exists constants b̃1 and b̃2 satisfying 0 < b̃1 < αi < b̃2 ≤ 1, such

that h̃(w) = ℓ̃i(w) for w ∈
[
b̃1, b̃2

]
. Since µ̃j = µj for any j > i, the lines ℓj(w) and ℓ̃j(w) coincide

for any j > i. Moreover, since µ̃i < µi, we have b̃1 < b1, and line ℓ̃i(w) is strictly above the x-axis
and the lines {ℓ̃j(w)}j>i for any w ∈

(
b̃1, αi

)
. Therefore, according to (5), we have∑

j≤i

q∗(j|w) = 1, ∀w ∈
(
b̃1, αi

)
. (19)

However, since b̃1 < b1, (18) and (19) cannot hold simultaneously. This implies that the optimal
Lagrangian dual variable µ∗ of (3) must be unique.

A.12.2 Step Two: Connection between Optimal Dual Variables

Given an optimal Lagrangian dual variable λ∗ = (λ∗
k)k∈[n] of (8), we define a dual variable µ =

(µi)i∈[n] with µi =
∑

k≥i λ
∗
k for any i ∈ [n]. In the following, we show that V LR(µ) = V̄ . Therefore,

µ is an optimal Lagrangian dual variable of (3) by the strong duality (Lemma 4.5).
Let {q∗i } be an optimal solution to (8), and T ≜ {k ∈ [n] : λ∗

k > 0} denote the set of positive
elements of λ∗. Note that if k ∈ T , then the participation constraint in (8) is binding with the top
k employers due to complementary slackness; that is,∑

i≤k

αiq
∗
i = E

[
w · 1

[
w ≥ G−1

(
1−

∑
i≤k

q∗i

)]]
. (20)

The set T is nonempty because n ∈ T . To see this, let i = n in (9); this gives

vn + λ∗
n ·

(
G−1

(
1−

n∑
j=1

q∗j

)
− αn

)
= 0. (21)

Note that G−1(1−
∑n

j=1 q
∗
j ) corresponds to the cutoff value z∗ in Proposition 4.7 Bullet 2, which

is strictly less than αn, because the participation constraint of employer n is binding. This implies
that λ∗

n > 0 (whose value is unique because the value of z∗ is unique according to Proposition 4.7
Bullet 2).

Following the notation in Section 4.4.2, suppose set T = {t1 < t2 < · · · < tm = n} contains m
employers. These m employers partition the n employers into m groups {Ti}i∈[m] with T1 = [t1]
and Ti = [ti−1+1 : ti] for i ∈ [2 :m], and each group Ti contains exactly one element from T , which
is the largest element in Ti. In addition, let zi ≜ G−1

(
1−

∑ti
j=1 q

∗
j

)
for any i ∈ [m] and z0 = 0, and

define subinterval Ii = [zi, zi−1] for any i ∈ [m].
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In Lemma A.1, we provide structural properties of the employers’ lines ℓi(w;µi) = vi + µi(w −
αi) and fully characterize the envelope functions h(w;µ) ≜ maxi∈[n] ℓi(w;µi) and h̄(w;µ) ≜
max{h(w;µ), 0}.

Lemma A.1. Given an optimal Lagrangian dual variable λ∗ = (λ∗
k)k∈[n] of (8), define a dual variable

µ = (µi)i∈[n] where µi =
∑

k≥i λ
∗
k for any i ∈ [n]. The following hold:

1. For any i ∈ [m] and any employer j ∈ Ti, the threshold value αj satisfies αj ∈
(
zi, zi−1

)
.

2. For any group Ti, the lines ℓj(w;µj) for any j ∈ Ti completely overlap, and they pass through

the points (αj , vj) for any j ∈ Ti.

3. Given any two employers j ∈ Ti and k ∈ Ti+1 with i ≤ m − 1, the two lines ℓj(w;µj) and

ℓk(w;µk) intersects at w = zi. In addition, for any employer j ∈ Tm, the line ℓj(w;µj)

intersects the x-axis at w = zm.

4. h(w;µ) = ℓj(w;µj) for any i ∈ [m], j ∈ Ti, and w ∈
[
zi, zi−1

]
. In addition, h(w;µ) =

ℓj(w;µj) for any j ∈ Tm and w ∈
[
0, zm

]
.

5. h̄(w;µ) = h(w;µ) for w ≥ zm and h̄(w;µ) = 0 otherwise.

We prove Lemma A.1 in Appendix A.12.3. According to (5) and Lemma A.1, a set of allocation
probabilities {q(j|w)} is optimal to V LR(µ) if and only if {q(j|w)} are nonnegative, no larger than
one, and satisfy the following:∑

j∈Ti

q(j|w) = 1, ∀w ∈
(
zi, zi−1

)
, i ∈ [m],

∑
j∈[n]

q(j|w) = 0, ∀w < zm.
(22)

Moreover, (26) below indicates that there exists an optimal solution {q∗(j|w)} to V LR(µ) such that
for any i ∈ [m] and j ∈ Ti, we have:∫

w∈Ii
q∗(j|w) dw = q∗j ,∫

w∈Ii
w · q∗(j|w) g(w) dw = αj

∫
w∈Ii

q∗(j|w) g(w) dw.
(23)

We observe from (22) that for any employer j ∈ Ti, q
∗(j|w) = 0 for any w /∈ Ii. This observation,

combined with (23), implies that for any j ∈ [n], we have:∫ 1

0
q∗(j|w) g(w) dw = q∗j , (24)∫ 1

0
w · q∗(j|w) g(w) dw = αj

∫ 1

0
q∗(j|w) g(w) dw. (25)
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Therefore,

V LR(µ) =

∫ 1

0

n∑
j=1

{
vj + µj

(
w − αj

)}
q∗(j|w) g(w) dw

=
n∑

j=1

vj ·
∫ 1

0
q∗(j|w) g(w) dw

=

n∑
j=1

vj · q∗j = V CR = V̄ ,

where the first equation follows from the fact that {q∗(j|w)} is optimal to V LR(µ), the second from
(25), the third from (24), the fourth from the fact that {q∗j } is optimal to (8), and the fifth from
Proposition 4.10.

A.12.3 Proof of Lemma A.1

Proof of Bullet 1 For any group Ti and element k ∈ Ti, subtracting both sides of the first
constraint in (8) from both sides of (20) with k = ti−1, and noting that the first constraint in (8)
is binding with k = ti, yields the following:∑

j∈[ti−1+1:k]

αjq
∗
j ≤ E

[
w · 1

[
G−1

(
1−

∑
j≤k

q∗j

)
≤ w < zi−1

]]
, ∀ k ∈ [ti−1 + 1 : ti − 1],

∑
j∈Ti

αjq
∗
j = E

[
w · 1

[
zi ≤ w < zi−1

]]
.

(26)

In addition, we have P[zi ≤ w < zi−1] =
∑

j∈Ti
q∗j . Analogous to the proof of Proposition 4.10 (in

particular, Step Two in Appendix A.11), we can allocate the state w ∈ [zi, zi−1] to employers in
group Ti (possibly in a randomized way), so that each employer j is allocated with an aggregate
size of q∗j > 0, and the posterior mean of the allocation to employer j is αj (i.e., the participation
constraint is tight). This implies that αj ∈ (zi, zi−1) for any j ∈ Ti.

Proof of Bullet 2 If group Ti contains only one employer, there is nothing to prove. Now suppose
Ti contains more than one employer (i.e., ti−1 + 1 < ti). For any k ∈ [ti−1 + 1 : ti − 1], we have

µk =
∑
j≥k

λ∗
j = µti =

vk − vti
αk − αti

, (27)

where the first equation follows from the definition of {µi} and the second equation follows from
the fact that λ∗

j = 0 for any j ∈ [ti−1 + 1 : ti − 1]. The third equation is derived by subtracting
both sides of (9) with i = ti from both sides of the same equation with i = k. (27) implies that the
points {(vj , αj)}j∈Ti lie on a line, and the employers’ lines ℓj(w;µj) with any j ∈ Ti fully overlap
and coincide with this line.

Proof of Bullet 3 For ease of notation, we drop the dependence on the dual variable µ = (µj)j∈[n]
by letting ℓj(w) ≜ ℓj(w;µj) = vj + µj(w − αj). Based on Bullet 2, it suffices to show that: (i) line
ℓn(w) intersects the x-axis at w = zm, and (ii) for any i ∈ [m− 1], the two lines ℓti(w) and ℓti+1(w)
intersect at w = zi.
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First, from (21) we have

vn + λ∗
n · (zm − αn) = vn + µn · (zm − αn) = 0,

where the first equation follows from µn = λ∗
n by definition. Therefore, line ℓn(w) intersects the

x-axis at w = zm.
We now prove (ii) by induction. To start, note that

µti =

m∑
j=i

λ∗
tj , ∀i ∈ [m] (28)

because λ∗
k = 0 for any k /∈ T . We first show that (ii) holds for i = m− 1. Since line ℓn(w) passes

through the point (zm−1, hm−1) with

hm−1 = µn · (zm−1 − zm), (29)

it suffices to show that line ℓtm−1(w) also passes through (zm−1, hm−1). We now verify this. Specif-
ically, taking i = tm−1 in (9) yields

vtm−1 + λ∗
n · (zm − αtm−1) + λ∗

tm−1
· (zm−1 − αtm−1) = vtm−1 + µtm−1 ·

(
zm−1 − hm−1/µtm−1 − αtm−1

)
= 0

where the first equation follows from (28) and (29). Therefore, it follows that

vtm−1 + µtm−1 · (zm−1 − αtm−1) = hm−1,

implying that line ℓtm−1(w) also passes through the point (zm−1, hm−1).
We now assume that (ii) holds for any j ≥ i + 1 and verify that it also holds for j = i. Given

that (ii) holds for any j ≥ i+ 1, line ℓti+1(w) passes through the point (zi, hi) with

hi =
m−1∑
j=i

µi+1 · (zi − zi+1). (30)

It suffices to show that line ℓti(w) also passes through (zi, hi). To do so, take i = ti in (9); this
gives:

vti +
m∑
j=i

λ∗
tj ·
(
zj − αti

)
= vti + µti ·

(
zi − hi/µti − αti

)
= 0,

where the first equation follows from (30) and the fact that λ∗
tj = µtj −µtj+1 for any j ∈ [m] (letting

µtm+1 = 0) by (28). Therefore, we have

vti + µti · (zi − αti) = hi,

implying that line ℓti(w) also passes through the point (zi, hi). Therefore, (ii) holds for j = i.

Proof of Bullet 4 Bullet 4 follows from Bullets 2 and 3 and the fact that the dual variables {µi},
which corresponds to the slopes of the lines ℓi(w;µi), are decreasing.
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Proof of Bullet 5 According to Bullet 3, the function h(w;µ) is nonnegative if and only if w ≥ zm.
Therefore, h̄(w;µ) = h(w;µ) for w ≥ zm, and h̄(w;µ) = 0 otherwise.

A.13 Proof of Proposition 4.14

In the following, we first prove that the values of {bk} and {ρk} in Algorithm 1 exist and can
be identified efficiently (Appendix A.13.1). We then show that the assignment probability q(j|w)
returned from Algorithm 1 is optimal to (3) and possesses the first-order stochastically increasing
property (Appendix A.13.2).

A.13.1 Existence of {bk} and {ρk}

We prove by induction that the values of {ρk} and {bk} in Algorithm 1 exist and can be computed
efficiently.

Induction Step We first determine the values of bti−1+1 and ρti−1+1. From (13), the following
hold:

E

[
w

∣∣∣∣∣G−1

(
1−

∑
j≤ti−1+1

q∗j

)
≤ w < zi−1

]
≥ αti−1+1 ,

E
[
w
∣∣∣zi ≤ w < zi−1

]
=
∑
j∈Ti

αj ·
q∗j∑

j∈Ti
q∗j

≤ αti−1+1 ,

where the inequality in the second line follows from the fact that αti−1+1 ≥ αj for any j ∈ Ti.
Therefore, there exists a value of bti−1+1 satisfying that zi ≤ bti−1+1 ≤ G−1

(
1−
∑

j≤ti−1+1 q
∗
j

)
≤ zi−1

and that E
[
w
∣∣bti−1+1 ≤ w ≤ zi−1

]
= αti−1+1. Additionally, let ρti−1+1 = q∗ti−1+1 /P[bti−1+1 ≤ w <

zi−1] ≤ 1. The allocation probability q(ti−1+1|w) satisfies (14) by the setup of bti−1+1 and ρti−1+1.

Iteration Step Let k be an integer with k ∈ [ti−1 +2 : ti − 1]. Suppose that for any j ∈ [ti−1 +1 :
k − 1], we have determined the values of ρj and bj such that the probability q(j|w) satisfies (14).
We now identify the values of ρk and bk such that the probability q(k|w) also satisfies (14).

To achieve this, let bk = b ∈ [zi, zi−1] and ρk = ρ ∈ [ρ
k
, 1], with ρ

k
≜

q∗k∑ti
ℓ=k q∗ℓ

. Additionally,

let q(k|w) = ρk ·
(
1 − q≤k−1(w)

)
for w ∈ [bk, zi−1] and q(k|w) = 0 for w ∈ [zi, bk). We define the

following two functions:

F (b, ρ) ≜
∫
w∈Ii

q(k|w) g(w) dw ,

Q(b, ρ) ≜
∫
w∈Ii

w · q(k|w) g(w) dw .

The allocation probability q(k|w) satisfies (14) under the choice of bk = b and ρk = ρ if and only if
F (b, ρ) = q∗k and Q(b, ρ) = αkq

∗
k.

Evidently, the function F (b, ρ) is strictly increasing in ρ and strictly decreasing in b. Therefore,
for any ρ ∈ [ρ

k
, 1], there exists a unique value, denoted by b(ρ), that satisfies F

(
b(ρ), ρ

)
= q∗k.
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Specifically, we have b
(
ρ
k

)
= zi. To see this, note that the following holds:

F
(
zi, ρk

)
= ρ

k
·
∫
w∈Ii

(
1− q≤k−1(w)

)
g(w) dw

= ρ
k
·

(∫
w∈Ii

g(w) dw −
k−1∑

j=ti−1+1

∫
w∈Ii

q(j|w) g(w) dw

)
= q∗k ,

where the first equation follows from the definition of q(k|w), and the third equation follows from
the facts that P[zi ≤ w < zi−1] =

∑
j∈Ti

q∗j and that the probability q(j|w) satisfies (14) for any
j ≤ k − 1, and the definition of ρ

k
. Moreover, the function b(ρ) is strictly increasing with ρ. Its

inverse, denoted by ρ(b), exists and is also strictly increasing.
We now define the function

Q(b) ≜ Q
(
b, ρ(b)

)
.

Since F
(
b, ρ(b)

)
= q∗k for any value of b, it suffices to find a value b ∈ [zi, bk−1] satisfyingQ(b) = αkq

∗
k,

which we do now.
First, note that the function Q(b) is increasing. This is because, as b increases, we transport a

fixed mass q∗k of candidates to the right, which increases the mean quality of these candidates.
Second, we inspect the value of Q(zi). Specifically, the following holds:

Q(zi) = ρ
k
·
∫
w∈Ii

w ·
(
1− q≤k−1(w)

)
g(w) dw

= ρ
k
·

∫
w∈Ii

w g(w) dw −
k−1∑

j=ti−1+1

∫
w∈Ii

w · q(j|w) g(w) dw


=

q∗k∑ti
ℓ=k q

∗
ℓ

·

∑
ℓ∈Ti

αℓq
∗
ℓ −

k−1∑
ℓ=ti−1+1

αℓq
∗
ℓ


=

∑ti
ℓ=k αℓq

∗
ℓ∑ti

ℓ=k q
∗
ℓ

· q∗k

≤ αkq
∗
k,

(31)

where the third equation follows from the second line of (13) and that probability q(j|w) satisfies
(14) for any j ≤ k − 1, and the inequality follows from the fact that αℓ decreases with index ℓ.

Finally, we derive two more inequalities. If b(1) ≥ bk−1 (in other words, the “unoccupied” area
to the right of bk−1 and above the function q≤k−1(w) is larger than q∗k), we have

Q
(
bk−1

)
= αk−1q

∗
k > αkq

∗
k , (32)

because in this case, q(k|w) = c · q(k − 1|w) for some constant c > 0 and any w ∈ Ii.
Alternatively, suppose b(1) ≤ bk−1. Then, it follows that q≤k(w) = 1 for w ∈

[
b(1), zi−1

]
and

q≤k(w) = 0 for w < b(1), which indicates that b(1) = G−1
(
1−

∑
j≤k q

∗
j

)
. As a result, the following
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hold:

Q
(
b(1)

)
=

∫
w∈Ii

w · q≤k(w) g(w) dw −
∫
w∈Ii

w · q≤k−1(w) g(w) dw

=

∫ zi−1

b(1)
w · q≤k(w) g(w) dw −

k−1∑
j=ti−1+1

∫
w∈Ii

w · q(j|w) g(w) dw

= E
[
w · 1

[
G−1

(
1−

∑
j≤k

q∗j

)
≤ w < zi−1

]]
−

k−1∑
j=ti−1+1

∫
w∈Ii

w · q(j|w) g(w) dw

≥
k∑

j=ti−1+1

αjq
∗
j −

k−1∑
j=ti−1+1

αjq
∗
j

= αkq
∗
k ,

(33)

where the inequality follows from the first equation in (13) and the fact that probability q(j|w)
satisfies (14) for any j ≤ k − 1.

Since the function Q(b) is continuous and increasing in b, (31) – (33) imply that there exists a
value bk ∈

[
zi,min{bk−1, b(1)}

]
satisfying Q(bk) = αkq

∗
k. Moreover, the value of bk can be efficiently

identified using binary search. Let ρk = ρ(bk). The probability q(k|w) satisfies (14) under the choice
of bk and ρk.

Final Step Let q(ti|w) = 1−q≤ti−1(w) for any w ∈ Ii. Since q(j|w) satisfies (14) for any j ≤ ti−1,
the second equation in (13) and the fact that P[zi ≤ w < zi−1] =

∑
j∈Ti

q∗j imply that q(ti|w) also
satisfies (14).

A.13.2 Optimality and FOSD Property

Let {q(j|w)} denote the output of Algorithm 1. {q(j|w)} is optimal to (3) according to Lemma 4.13.
We now prove that the distribution q(·|w) first-order stochastically increases with w on the

interval Ii. By definition, this is equivalent to proving that the cumulative distribution function
q≤k(w) is increasing in w for any k ∈ Ti. We prove this by induction. First, q≤ti−1(w) = 0 for any
w ∈ Ii by definition, which serves as the induction step. Next, suppose q≤k−1(w) is increasing on
w ∈ Ii for some k ∈ Ti, we show that q≤k(w) is also increasing. To do so, fix two points w,w′ ∈ Ii
with w′ < w. If w′ < bk, we have

0 = q≤k(w
′) = q≤k−1(w

′) ≤ q≤k−1(w) ≤ q≤k(w),

where the inequality follows from the fact that q≤k−1(w) increases with w. Alternatively, if w′ ≥ bk,
we have

q≤k(w
′) = q≤k−1(w

′) + ρk ·
(
1− q≤k−1(w

′)
)

= q≤k−1(w
′) + ρk ·

(
q≤k−1(w)− q≤k−1(w

′)
)
+ ρk ·

(
1− q≤k−1(w)

)
≤ q≤k−1(w

′) + q≤k−1(w)− q≤k−1(w
′) + ρk ·

(
1− q≤k−1(w)

)
= q≤k−1(w) + ρk ·

(
1− q≤k−1(w)

)
= q≤k(w),

where the inequality follows from the fact that q≤k−1(w) ≥ q≤k−1(w
′) and ρk ≥ 0.
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A.14 Proof of Proposition 4.15

A.14.1 Proof of Bullet 1

Let {λ∗
k} denote an optimal dual variable for the participation constraints in (8) and {Ti} denote

the resulting partition of the n employers as described in Section 4.4.2. For a feasible solution {qk}
to (8), let

Ti

(
{qk}

)
≜
∣∣∣Ti ∩ {k ∈ [n] : qk > 0}

∣∣∣
denote the number of employers in group Ti that have a positive probability qk.

Let {q∗k} denote an optimal solution to (8). Lemma A.2 shows that if there exists a group Ti

that satisfies Ti

(
{q∗k}

)
> 2, we can find a new optimal solution {q̃k} to (8) that is closer to the

desired one in Bullet 1.

Lemma A.2. Let {q∗k} denote an optimal solution {q∗k} to (8). If there exists a subset Ti that
satisfies Ti

(
{q∗k}

)
> 2, we can find a new optimal solution {q̃k} to (8) such that (i) q̃k = q∗k for any

k /∈ Ti, and (ii) Ti

(
{q̃k}

)
< Ti

(
{q∗k}

)
.

Repeating the process in Lemma A.2 iteratively will eventually (in at most n steps) yields a
desired optimal solution to (8) that satisfies Bullet 1.

Proof of Lemma A.2. From Lemma 4.13, there exists an optimal solution {q∗(j|w)} to (3) such that
the candidate joins each employer j with probability q∗j . Suppose Ti

(
{q∗k}

)
> 2. In the following,

we modify {q∗(j|w)} to create a new optimal solution {q̃(j|w)} to (3) such that the candidate joins
each employer j with probability q̃j , where {q̃j} satisfies Lemma A.2. Then, {q̃j} is optimal to (8)
according to Proposition 4.10.

Assume {a, b, c} ⊆ Ti

(
{q∗k}

)
, where a, b, and c denote three distinct integers. Without loss of

generality, assume that 1 ≤ a < b < c ≤ n. Therefore, αa > αb > αc. We consider the following
two scenarios.

Case One Suppose
αaq

∗
a + αcq

∗
c

q∗a + q∗c
= αb, (34)

that is, the mean quality of the candidates joining employers a or c is precisely αb, the recruiting
bar of employer b. Let

q̃(j|w) =


q∗(a|w) + q∗(b|w) + q∗(c|w) if j = b,

0 if j ∈ a, c,

q∗(j|w) if j /∈ {a, b, c}.

(34) implies that the participation constraint for employer b remains binding with q̃(j|w). Therefore,
q̃(j|w) is optimal to (3) according to Lemma 4.13. Additionally, we have

q̃j ≜
∫ 1

0
q̃(j|w) g(w) dw =


q∗b + q∗a + q∗c if j = b,

0 if j ∈ a, c,

q∗j if j /∈ {a, b, c}.

As a result, {q̃j} satisfies Lemma A.2 because {q̃j} is optimal to (8) by Proposition 4.10 and
Ti

(
{q̃j}

)
= Ti

(
{q∗j }

)
− 2 < Ti

(
{q∗j }

)
by construction.
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Case Two Suppose (34) does not hold. Without loss of generality, assume that αaq∗a+αcq∗c
q∗a+q∗c

> αb,

which translates to q∗a > q
a
≜ q∗c ·

αb−αc

αa−αb
. Let ρa ≜ q

a
/q∗a < 1. Note that the following holds:

αaqa + αcq
∗
c

q
a
+ q∗c

= αb. (35)

Let

q̃(j|w) =


ρa · q∗(a|w) + q∗(b|w) + q∗(c|w) if j = b,

(1− ρa) · q∗(a|w) if j ∈ a,

0 if j ∈ c,

q∗(j|w) if j /∈ {a, b, c}.

(35) implies that the participation constraint for employer b remains binding with q̃(j|w). Therefore,
q̃(j|w) is optimal to (3) according to Lemma 4.13. Additionally, we have

q̃j ≜
∫ 1

0
q̃(j|w) g(w) dw =


q∗b + ρa · q∗a + q∗c if j = b,

(1− ρa) · q∗a if j ∈ a,

0 if j ∈ c,

q∗j if j /∈ {a, b, c}.

As a result, {q̃j} satisfies Lemma A.2 because {q̃j} is optimal to (8) by Proposition 4.10 and
Ti

(
{q̃j}

)
= Ti

(
{q∗j }

)
− 1 < Ti

(
{q∗j }

)
by construction.

A.14.2 Proof of Bullet 2

We prove Bullet 2 based on our established results from the dual analysis. Assume, without loss
of generality, that there exists an optimal solution {q∗k} to (8) such that q∗k > 0 for any k ∈ [n]. We
then show that the values of {q∗k} are unique. To see that this assumption loses no generality, let

P∅ =
{
k ∈ [n] : q∗k = 0 for any optimal solution{q∗k} to (8)

}
denote the set of employers ignored by any optimal solution to (8). We can exclude the employers
in set P∅ without affecting anything. Meanwhile, define P = [n] \ P∅. Since (8) is a convex
optimization problem, the set of optimal solutions is convex. This implies that there exists an
optimal solution {q∗k} such that q∗k > 0 for any k ∈ P .

Now, let {λ∗
k} denote the optimal dual variable of (8). Note that the values of {λ∗

k} are unique
according to Proposition 4.11. Let {Ti} denote the partition of employers described in Section 4.4.2.
Since no three points of {(αi, vi)}i∈[n] are collinear, any group Ti contains at most two employers
based on Bullet 2 of Lemma 4.12. Fix a group Ti. First, suppose Ti = {k} contains one employer.
Then, we have q∗k = P[zi ≤ w ≤ zi−1], whose value is uniquely determined.

Second, suppose Ti = {k, j} contains two employers. Then, the values of q∗k and q∗j must satisfy

q∗k + q∗j = P[zi ≤ w ≤ zi−1],

αkq
∗
k + αjq

∗
j = E

[
w · 1

[
zi ≤ w ≤ zi−1

]]
,

and therefore, are uniquely determined as well.
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