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Abstract

Experimentation is prevalent in online marketplaces and social networks to assess the effec-
tiveness of new market intervention. To mitigate the interference among users in an experiment,
a common practice is to use a cluster-based experiment, where the designer partitions the mar-
ket into loosely connected clusters and assigns all users in the same cluster to the same variant
(treatment or control). Given the experiment, we assume an unbiased Horvitz–Thompson esti-
mator is used to estimate the total market effect of the treatment. We consider the optimization
problem of choosing (correlated) randomized assignments of clusters to treatment and control
to minimize the worst-case variance of the estimator under a constraint that the marginal as-
signment probability is q ∈ (0, 1) for all clusters. This problem can be formulated as a linear
program where both the number of decision variables and constraints are exponential in the
number of clusters—and hence is generally computationally intractable.

We develop a family of practical experiments that we refer to as independent block random-
ization (IBR) experiments. Such an experiment partitions clusters into blocks so that each
block contains clusters of similar size. It then treats a fraction q of the clusters in each block
(chosen uniformly at random) and does so independently across blocks. The optimal cluster
partition can be obtained in a tractable way using dynamic programming. We show that these
policies are asymptotically optimal when the number of clusters grows large and no cluster size
dominates the rest. In the special case where cluster sizes take values in a finite set and the
number of clusters of each size is a fixed proportion of the total number of clusters, the loss is
only a constant that is independent of the number of clusters. Beyond the asymptotic regime,
we show that the IBR experiment has a good approximation for any problem instance when
q is not very tiny. We also examine the performance of the IBR experiments on data-driven
numerical examples, including examples based on Airbnb and Facebook data.

Subject classifications: Variance minimization, robust optimization, experimental design, cluster-
based randomization, approximation algorithms, asymptotic optimality.

*An earlier version of this paper was circulated under the title “Near-Optimal Experimental Design for Networks:
Independent Block Randomization.”



1 Introduction

Experimental design is a celebrated branch of statistics—rooted in the pioneering work of Fisher

in the 1920s and 1930s (Fisher 1935). In recent years, thanks to the rapid decrease in the cost of

conducting experiments in online platforms, experimental design has become a prevalent tool for

improving the operations of online marketplaces and social networks. These platforms often conduct

binary experiments, also known as A/B testing, before launching a new feature or introducing

a market intervention, as they strive to make data-driven product decisions. To do this, the

experiment exposes a (randomized) group of targeted users to the new feature or, equivalently,

assigns each user to either the treatment or the control group. The platform then uses the resulting

outcomes to estimate the new feature’s total market effect, i.e., the difference in total user outcomes

if the feature is introduced to the entire market. Accurately estimating this quantity enables the

platform to decide whether to deploy this new feature informatively.1

The aforementioned platforms often exhibit complex network effects. Consequently, unless

designed carefully, the experiments could suffer from interference, where one user’s assignment to

the treatment or control affects another user’s outcome (or behavior). For example, passengers

in a ride-sharing platform share the same supply of drivers; hence, enabling prime-time subsidies

for passengers in one neighborhood can impact the service experienced by passengers in nearby

neighborhoods (Chamandy 2016). Similarly, advertisers in an ad-exchange platform might compete

in the same publisher’s auction (Basse et al. 2016, Barajas et al. 2016), connected users of a social

network might be involved in the same daily activities (Eckles et al. 2017), and hosts in an online

hospitality platform (such as Airbnb) might share the same pool of guests (Holtz et al. 2020, Cui

et al. 2020). In all of these examples, a user’s response to treatment may contaminate the outcomes

of other users, thereby resulting in bias or inaccuracy when one estimates the total market effect.

To alleviate such interference, a common practice (e.g., Chapter 22 of Kohavi et al. 2020) is

to partition the market into almost disconnected clusters (i.e., groups of users) that exhibit only

a minor amount of interference with each other (Eckles et al. 2017, Koutra 2017). For example,

riders or hosts from distant neighborhoods are unlikely to interfere with each other; advertisers

of totally different products may have different potential publishers; and finally, users in a social

network usually form clusters based on their geography, interests, and beliefs. Given these clusters,

the platform runs a “cluster-based randomized experiment.” Specifically, the platform assigns all

1When a new feature is rolled out, it often impacts all market participants (see, e.g., Chamandy 2016), which
motivates our focus on the total market effect. A complementary research direction, which is outside the scope of
the present work, involves personalized feature deployments and adapting the design of experiments accordingly.
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of the users in the same cluster to the same treatment or control variant, in order to (hopefully)

remove much of the interference, and hence have a relatively unbiased estimation of the total market

effect.2 While such a cluster-based assignment reduces interference, it comes at a cost: since after

clustering there are effectively fewer experimental units, the variance can increase, especially if

the designer assigns different clusters independently to treatment or control. Thus, the challenge

becomes choosing (correlated) randomized assignments across clusters to obtain a lower variance,

and understanding the structure of the “optimal correlation” between the binary assignments of

different clusters.

1.1 Our Contributions

To address the above challenge, we focus on an ideal setting where the market is partitioned into

(heterogeneous) clusters that do not connect/interfere with each other.3 Such an ideal setting can

hold either naturally (e.g., when the market is clustered at the city level in applications such as ride-

sharing or online hospitality platforms) or when the designer trusts that clusters have mitigated the

interference to an acceptable extent and would like to ignore the remaining inter-cluster interference.

Given the disjoint clusters, the decision maker chooses a random assignment of each cluster to

either treatment or control. We assume that the marginal assignment probability is q ∈
(
0, 12
]
(this

is without loss of generality by Remark 2.1) for all clusters. Then, she uses the Horvitz–Thompson

unbiased estimator (Horvitz and Thompson 1952) to estimate the total market effect given real-

ized outcomes. The objective is to design an optimal joint distribution of assignments under the

marginal assignment probability constraint, so as to minimize the variance of this estimator. The

variance depends on two things: the joint distribution of assignments and the cluster-level potential

outcomes. Since the potential outcomes are uncertain, we formulate the problem as a robust opti-

mization problem against the worst-case values (also known as adversarial values) of the unknown

potential outcomes, whose uncertainty sets are nonnegative intervals.

In Section 2, we formally formulate the above optimization problem. Specifically, we show that

the experimental design problem is equivalent to a more abstract (robust) optimization problem of

designing (negative) correlation among n Bernoulli random variables, which could be of independent

interest. Each Bernoulli random variable has a marginal success probability q (which corresponds

to the probability of being assigned to treatment) and the objective is to minimize the worst-

2See Section 1.1 of Wager and Xu (2021) for a related discussion.
3This is the same as the “SUTVA (Stable Unit Treatment Value Assumption) for clusters” assumption in, e.g.,

Hudgens and Halloran (2008), Zigler and Papadogeorgou (2021), and Karrer et al. (2020).
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case variance of a weighted sum of these n Bernoulli variables. Here, the weights are selected

adversarially from bounded nonnegative intervals.

As a first step to solve the above optimal cluster-based randomized experimental design prob-

lem, we focus on the special case where cluster sizes are identical, and we illustrate the price of

independence. Specifically, we show that randomly assigning a fraction q of the clusters to treatment

is optimal (Proposition 3.1), whereas simply assigning treatment to each cluster independently is

only a 4-approximation. In general, the problem of obtaining the optimal correlation under the

worst-case vector of potential outcomes can be formulated as a linear program. However, this prob-

lem is generally intractable, as both the number of decision variables and the number of constraints

are exponential in the number of clusters. Moreover, even if we could solve for the optimal exper-

iment, it turns out that it has another subtle drawback: it often involves complicated correlation

structures in the assignments of treatments, making it possibly difficult to implement and interpret

in practice. Motivated by this, we ask the following natural research question:

Can we design simple, computationally efficient, and interpretable correlated cluster-based ran-

domized experiments that are approximately or asymptotically optimal?

As our main technical contribution, we answer the above question in the affirmative. In par-

ticular, inspired by the special case of the optimal cluster-based assignment problem with identical

cluster sizes, we develop a family of practical experiments that we refer to as independent block

randomization (IBR) experiments. Specifically, we partition clusters into blocks so that each block

contains clusters of (approximately) similar size. We then assign the treatment variant to a frac-

tion q of the clusters in each block that are selected uniformly at random, and do so independently

across blocks. Recall that doing so yields the optimal experiment in the aforementioned special

case, but this is not necessarily the case in general. In fact, the suboptimality of the IBR exper-

iments originates from two sources: (a) the loss due to the independence of assignments among

different blocks, and (b) the loss from ignoring the cluster size differences within a block. The key

idea behind our policies is to partition clusters into blocks in a way that makes these losses as small

as possible, and our analysis relies on showing that these losses can indeed be substantially reduced

through careful choices of the partitions.

Since the blocks are treated independently, the worst-case variance of an IBR experiment is the

sum of the worst-case variances for each block. We provide a full characterization of the worst-case

potential outcomes (and hence the worst-case variance) within a block. This characterization gives

us a handle to analyze the variance of this family of experiments. Specifically, it enables us to
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solve for the optimal partitioning of the clusters into blocks in a way that minimizes the variance,

through the solution of a simple dynamic program. We then focus on analyzing the performance gap

between the optimal IBR experiment and the optimal experiment for the cluster-based assignment

problem. We demonstrate and prove the following results:

1. We first (in Section 4.1) establish upper-bounds on the approximation ratio of the optimal

IBR experiment for any problem instance with marginal assignment probability q. Our upper-

bounds depend on q and lead to acceptable constants when q is not very small (for example,

the approximation ratio is 7
3 for q = 1

2 , 2 for q = 1
3 ,

7
3 for q = 1

4 , and
12
5 for q = 1

5). To obtain

this result, we analyze a subfamily of simpler k-partition IBR experiments as described in

Section 4.1.2. The optimal choice of k in our analysis (which depends on the value of q)

provides the desired approximation ratio.

2. We then (in Section 4.2) focus on asymptotic analysis, and show that the IBR experiment

with optimal partition is asymptotically optimal for any marginal assignment probability q

in the regime with many clusters and when no cluster dominates the rest (asymptotically)

in terms of size. We also provide an example that shows that our “no dominating cluster”

condition is necessary for any IBR experiment to be asymptotically optimal.

3. In Section 4.2.1, for some special cases of the asymptotic regime, we also obtain stronger

results with a more careful analysis of the performance loss. Specifically, when the cluster

sizes take values in a finite set that does not change as the problem scales, we show that the

simple IBR experiment that places all the clusters of exactly the same size in the same block

only increases the worst-case variance by an additive O (
√
n) term compared to the optimal

experiment.4 If, in addition, the number of clusters of each size is a fixed proportion of the

total number of clusters, this simple IBR experiment only increases the worst-case variance

by an additive O(1) term, i.e., a constant amount.

4. Next, in Section 4.2.2, we introduce a simple member of the IBR family, which we refer

to as the logarithmic-partitioning IBR experiment. This simple experiment partitions the

clusters into blocks by making sure that the ratio of the largest to the smallest cluster sizes

in each block is upper-bounded by a given fixed constant η > 1. We then show that setting η

appropriately is sufficient for such an IBR experiment to be asymptotically optimal, albeit at a

slower convergence rate compared to the optimal IBR experiment. Notably, this logarithmic-

4On the other hand, the worst-case variance of an optimal experiment scales linear in n.
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partitioning IBR experiment requires no explicit optimization to find its blocks, which is in

contrast to the DP-based optimal IBR experiment.

Hence, our IBR experiments (under a careful design) are near-optimal with respect to minimiz-

ing the variance of the Horvitz–Thompson estimator under an adversarial model. More sophisti-

cated designs may have additional benefits, but this improvement is provably marginal.

To complement our theoretical results, in Section 5 and Appendix E, we examine the perfor-

mance of our IBR experiments on both a synthetic example and data-driven examples based on

Airbnb and Facebook data. We demonstrate that our (optimal) IBR experiment performs substan-

tially better than performance guarantees provided by our theoretical results in realistic instances,

and (i) decreases the variance substantially relative to independent cluster-based randomization,

and (ii) improves upon other heuristic designs—both on average and in the worst case.

1.2 Related Literature

We provide a brief summary of some other related work here, and leave a more comprehensive

review of further related literature to Appendix A.

Experiments in Networks and Online Platforms A number of recent papers have studied ex-

perimental design with interference in social network settings, e.g., Ugander et al. (2013), Eckles

et al. (2017), Aronow and Samii (2017), and Ugander and Yin (2020), and some of these work

propose a graph cluster-based randomization. We focus on an ideal case where the network can

be partitioned into disjoint clusters (perhaps after ignoring only a small number of connections)

and the decision maker is using cluster-based experiments. Also related to us, Pouget-Abadie et al.

(2019) introduce a novel correlation clustering objective to extract clusters for cluster-based ran-

domized experiments, while they fix the joint treatment assignments to be completely random. In

contrast, we assume the clusters are given exogenously and study the optimal correlation between

randomized assignments to minimize the variance of our particular estimator.

Interference in experiments for online markets have also been studied recently, e.g., Johari et al.

(2020), Wager and Xu (2021), Bright et al. (2022), and Li et al. (2023). These work often assume

a structural model of the marketplace, which induces an interference structure that plays a pivotal

role in the design and analysis of the experiments. This is in contrast to our model, where we

focus on a robust and efficient experiment that can withstand the worst-case scenario for potential

outcomes (with minimal assumption on those, e.g., non-negativity and bounded range).
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Robust Design Framework We adopt a robust design approach to experimental design (Berger

2013, Chapter 5) and, in particular, study the problem of minimizing the variance of the estimator

against the worst-case value of potential outcomes. Several recent works also use a similar ap-

proach. For example, Bojinov et al. (2020) study a switchback experimental design problem. The

authors restrict attention to experiments that partition a finite-time horizon into slots, and assign

treatment or control variants independently to each slot. Under this restriction, the worst-case po-

tential outcomes take the same extreme point of the uncertainty set, regardless of the experiment.

Our problem allows for general joint assignment distributions. The worst-case potential outcomes

depend on the specific correlation of the assignments, and thus are experiment-dependent. Har-

shaw et al. (2019) consider a similar robust design problem, where potential outcomes are assumed

to belong to an ℓ2-ball, and each unit has a covariate that can predict the potential outcomes.

A decision maker solves for an optimal experiment to trade off between covariate balancing and

robustness. They show that the problem is equivalent to aligning eigenvectors of the resulting

correlation matrix in desired directions, and they develop a randomized experiment based on the

Gram–Schmidt walk algorithm. Our work considers very different uncertainty sets for potential

outcomes. Beyond that, we also differ in other modeling aspects. Specifically, Harshaw et al. (2019)

consider a linear relation between potential outcomes and covariates. In constrst, our model does

not use covariate information; we only need to know the range of potential outcomes, possibly

inferred from covariate information in certain contexts.

1.3 Notation and Terminology

For any two integers a, b ∈ N with a ≤ b, we let [a : b] =
{
a, a+1, . . . , b− 1, b

}
denote a sequence of

integers starting from a and ending with b and we denote [n] = [1 :n] for any n ∈ N+. For a subset

S ⊆ [n], we let Sc = [n] \ S denote its complement. For any nonnegative real number x ∈ R+, we

let ⌊x⌋ ∈ N denote the floor of x, which is the greatest integer less than or equal to x; and we let

⌈x⌉ ∈ N denote the ceiling of x, which is the least integer greater than or equal to x. Finally, we let

ℜ denote the set of correlation matrices, i.e., matrices that are positive semidefinite with diagonal

entries equal to one. The size of the correlation matrices will be clear from the context.

2 Robust Correlation Design for Binary Random Variables

In this section, we first introduce a generic robust optimization problem of designing (negative) cor-

relation among n Bernoulli random variables, and we defer its motivation to Section 2.1. Suppose
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we have n binary random variables Z ≜
(
Zi

)n
i=1

∈
{
0, 1
}n

, each with a given marginal distribution

Bernoulli(q) for some known value q ∈
(
0, 12
]
; however, their correlation matrix needs to be de-

signed. We let Pq denote the set of all possible joint distributions of these binary random variables

(Zi)
n
i=1 and Σ(P ) denote the correlation matrix of (Zi)

n
i=1 under the joint distribution P ∈ Pq.

Throughout the paper, we study the following robust correlation design problem:

V OPT = min
P∈Pq

max
y∈×i∈[n][0,wi]

yTΣ
(
P
)
y, (1)

where a decision maker decides on the correlation matrix of these n binary random variables to

minimize the variance of a linear function yTZ. We further assume that the coefficient vector

y ∈ Rn is chosen adversarially by nature from the uncertainty set×i∈[n][0, wi], i.e., the cartesian

product of the intervals [0, wi].

In Section 2.1, we motivate this problem as designing the optimal correlation between the

assignments of a cluster-based randomized experiment. Specifically, we interpret Zi as an indicator

for the binary assignment of cluster i to either treatment or control, and the joint distribution as a

randomized (binary) experiment. In the rest of the paper, we assume that q ≤ 1
2 , which is without

loss of generality by Remark 2.1.

Remark 2.1. Assuming that the marginal probability q is in
(
0, 12
]
is without loss of generality.

To see this, note that Corr(Zi, Zk) = Corr
(
1 − Zi, 1 − Zk

)
for any i, k ∈ [n]; thus, the correlation

matrix of (Zi)
n
i=1 is the same as that of (1− Zi)

n
i=1. As a result, the correlation design problem (1)

with the marginal probability q is the same as that with the marginal probability 1− q.

2.1 Optimal Correlation Design for Cluster-Based Randomized Experiments

In this section, we introduce the problem of designing an optimal cluster-based randomized ex-

periment against the worst-case values of potential outcomes, which is our main motivation for

studying the min-max optimization (1).

Model Consider a decision maker designing a randomized binary experiment over n disjoint clus-

ters of users as experimental units.5 . We further restrict our attention to the class of “cluster-based

randomized experiments,” i.e., picking a (possibly correlated) randomized assignment of each clus-

ter to either of the two possible variants: treatment (the variant “1”) or control (the variant “0”).

For each cluster i ∈ [n], we let Zi be a binary random variable such that Zi = 1 if all users in

5We assume clusters are disjoint, possibly after ignoring a small number of edges in the given interference network.
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cluster i are assigned to treatment and Zi = 0 if all users in cluster i are assigned to control.

A cluster-based randomized assignment with a marginal assignment probability q is specified by a

joint distribution P[·] of these Bernoulli random variables Zi such that P[Zi = 1] = q for all clusters.

We assume q ∈
(
0, 12
]
by labeling the variant with a smaller assignment probability as treatment.

For a cluster i ∈ [n], we let yi1 ∈ R (and yi0 ∈ R, respectively) be the potential outcome of

the cluster (which is the aggregate of the potential outcomes of all users in the cluster) when the

cluster receives the treatment variant (the control variant, respectively). Clearly, only one of the

potential outcomes yi1 and yi0 is observed for any cluster i under any assignment.

Objective In applications of binary experimental design (or A/B testing), to make an informed

choice between the two variants for all users, the decision maker would like to estimate the total

market effect τ , which is the difference between the sum of the outcomes when all users receive the

treatment and when all users receive the control, i.e.,

τ ≜
n∑

i=1

yi1 −
n∑

i=1

yi0 = yT
11− yT

01,

where y1 = (yi1)i∈[n] and y0 = (yi0)i∈[n] are the concatenations of the potential outcomes and 1 is a

vector whose entries are all one. The total market effect τ is qualitatively equivalent to the (perhaps

more commonly used) average treatment effect (ATE), which is defined as τ divided by the total

number of users. Here, we simply focus on the total market effect for a more succinct mathematical

exposition later on (as we do not need to carry over the constant normalization throughout).

We focus on the celebrated Horvitz–Thompson unbiased estimator τ̂ (Horvitz and Thompson

1952) to estimate the total market effect, expressed as

τ̂ ≜
∑
i∈[n]

yi1Zi

q
−
∑
i∈[n]

yi0(1− Zi)

1− q
=

yT
1Z

q
− yT

0 (1− Z)

1− q
= yTZ− yT

01

1− q
, (2)

where yi ≜ yi1
q + yi0

1−q is the weighted sum of the treatment and control potential outcomes and

y = (yi)i∈[n] denotes their concatenation. By the linearity of expectations, E
[
τ̂
]
= τ ; thus, the

Horvitz–Thompson estimator is indeed unbiased. Given an unbiased estimator, the objective of

the decision maker is to design an experiment, i.e., a joint distribution for assigning treatment and

control across clusters, to minimize the variance of the estimator, i.e.,

Var [τ̂ ] = E
[(

τ̂ − E[τ̂ ]
)2]

= E
[(

τ̂ − τ
)2]

.
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Note that since the Horvitz–Thompson estimator is unbiased, minimizing the variance is equivalent

to minimizing the mean-squared error.

Worst-Case Potential Outcomes and Min-Max Optimization The variance of the Horvitz–

Thompson estimator τ̂ depends both on the assignment distribution (i.e., the experiment) and

on the value of unknown potential outcomes; hence, we follow a robust design approach. Specifi-

cally, we aim to design an experiment that minimizes the variance Var [τ̂ ] of the above estimator

against an adversarial selection of the potential outcomes – which basically corresponds to the

worst-case potential outcomes yi1 and yi0 for all i ∈ [n] for a given experiment. We impose the

following assumption on the potential outcomes.

Assumption 2.1 (Uncertainty Sets of Potential Outcomes). The potential outcomes are deterministic,

nonnegative, and bounded from above; without loss of generality, we assume that yi1 ∈ [0, wi1] and

yi0 ∈ [0, wi0] for all clusters i ∈ [n], where wi1 and wi0 are a priori known constants.

In many applications, it is reasonable to assume that the potential outcomes are nonnegative;6

however, our methodology in this paper is general and can be applied to other outcome ranges by

proper modifications. We comment further on this in Remark 2.3. The upper bounds wi1 and wi0

of the uncertainty sets can vary across clusters and treatment/control variants, and can incorporate

any prior information on the potential outcomes; e.g., wi1 and wi0 can be inferred from cluster-level

covariates and other side information in practice.

We now formulate the min-max optimization problem of solving the optimal experiment. By

(2), we can express the variance of the Horvitz–Thompson estimator as

Var[τ̂ ] = yTCov[Z]y = ỹTΣỹ , (3)

where Cov[Z] and Σ are the covariance and correlation matrices of the binary random vector Z,

respectively, and ỹ = (ỹi)i∈[n] with ỹi =
√

q(1− q) · yi =
√

q(1− q) ·
(
yi1
q + yi0

1−q

)
. By Assumption

2.1, we have ỹi ∈ [0, wi] for each i ∈ [n], with wi ≜
√
q(1− q) ·

(
wi1
q + wi0

1−q

)
. Finally, since Var[τ̂ ]

is a quadratic convex function of ỹ by (3), in the worst case, each ỹi takes a value of either 0 or

wi, which corresponds to either yi1 = yi0 = 0, or yi1 = wi1 and yi0 = wi0. We summarize these in

Lemma 2.1.

6For example, the number of completed rides during a certain time period by a ride-sharing platform, the number of
clicks in an online advertisement setting, and the amount of revenue created from a certain marketplace intervention,
etc., all need to be nonnegative.
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Lemma 2.1 (Structure of the Worst-Case Potential Outcomes). With any cluster-based randomized

experiment, the worst-case potential outcome is such that for any cluster i ∈ [n], either yi1 = yi0 = 0,

or yi1 = wi1 and yi0 = wi0. Moreover, let Σ be the correlation matrix of the assignments (Zi)i∈[n];

the corresponding variance of the Horvitz–Thompson estimator is

Var[τ̂ ] = ỹTΣỹ,

where ỹi =
√

q(1− q) ·
(
yi1
q + yi0

1−q

)
∈ [0, wi] with wi =

√
q(1− q) ·

(
wi1
q + wi0

1−q

)
for each cluster

i ∈ [n], and ỹ = (ỹi)i∈[n] ∈ Rn is the concatenation of these values.

By Lemma 2.1, the problem of finding the optimal experiment for minimizing the variance

against the adversarial selection of potential outcomes is exactly (1) and the worst-case variance of

an optimal experiment is equal to V OPT given the range wi of the uncertainty sets. We thus have

reduced the problem of finding the “robust” optimal cluster-based randomized experiment to (1).

For ease of exposition, and motivated by this application, in the remainder of the paper we refer

to the min-max optimization in (1) using the cluster-based randomized experiment terminology.

Specifically, we refer to index i as an index of the clusters, an upper bound wi of the uncertainty

set as the size of cluster i, a random variable Zi as a treatment assignment to cluster i, and a joint

assignment distribution of (Zi)
n
i=1 as an experiment.7

2.2 Hardness of Solving the Min-max Optimization Problem (1)

Since all potential outcomes are nonnegative by Assumption 2.1, achieving a small objective value

in (1) necessitates having a correlation matrix Σ(P ) with large (in absolute terms) negative off-

diagonal entries. Thus, intuitively, (1) can be viewed as a problem of designing optimal negative

correlation among the assignments. Given that the problem of achieving large negative correlations

between pairs of random variables (through the appropriate choice of some decision variables) is

quite natural, we suspect that our formulation and approach could be of interest in other settings

as well. Note that the min-max problem (1) is challenging to solve exactly, because:

(i) First, the inner problem is to maximize a quadratic convex function. Since the objective is

not concave, off-the-shelf optimization algorithms do not guarantee achieving an optimal solution.

7The size of a cluster should be more precisely referred to as the size of the uncertainty set. Usually, a cluster with
a larger physical size (i.e., number of users) tends to have a more extensive uncertainty set. On the other hand, even
when clusters have equal physical sizes, they can still be heterogeneous in other important covariates and hence can
have different ranges of potential outcomes, in which case our framework still applies. Here, we simply refer to the
upper bound of the uncertainty set as the size of a cluster for ease of exposition, at the expense of a little ambiguity.
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Moreover, due to convexity, the maximum is always achieved at an extreme point of the feasible

region satisfying yi ∈ {0, wi} for all i ∈ [n]. One way to solve this problem is to evaluate the

objective at the extreme points, which is computationally difficult due to the exponential number

of extreme points (in the number of clusters).

(ii) Second, the outer problem involves minimization over the joint distribution of binary assign-

ments, and the number of decision variables is exponential in the number of clusters as well. It

may be possible to develop approximation algorithms that, e.g., rely on a semidefinite programming

relaxation of the inner problem, and a relaxation of the outer problem to allow for any correlation

matrix—not necessarily only those achievable by a binary random assignment. But it remains

unclear how to efficiently compute a joint binary assignment distribution from such a correlation

matrix, even when the correlation matrix is indeed feasible.8

(iii) Third, (1) can be formulated as a linear program (see (6) in Appendix B.3). However, this

program has an exponential number of decision variables and constraints in the number of clusters:

we have the constraints defining the feasible set Pq plus we have one constraint for each extreme

point of the potential outcomes’ uncertainty set (to encode the worst-case objective). Hence, solving

this linear program directly is not computationally tractable.

Motivated by these challenges, in Section 3, we consider a family of practical experiments that

we refer to as independent block randomization experiments, and we show that (i) they are easy to

compute and interpret, and (ii) they admit provable performance guarantees. Before introducing

this family formally, we conclude this section with two remarks: one on the min-max formulation

of (1), and the other one on the nonnegative potential outcomes assumption.

Remark 2.2 (The Min-Max Formulation). Rüschendorf and Uckelmann (2002) and Section 3.6 of

Rachev and Rüschendorf (1998) study a technically related problem to our robust variance mini-

mization problem (1): given random variables with fixed marginal distributions, find a joint distri-

bution for these random variables to minimize the variance of a linear combination of these variables

(with known linear coefficients). The min-max formulation of our problem, in which the linear co-

efficients y are adversially chosen given a randomized experiment (rather than being fixed and

known a priori), renders fundamental differences from the problem described above. Specifically,

suppose that the marginal assignment probability q is equal to 1
2 . If all the coefficients y are known

in advance, the optimal experimental design problem simply reduces to the classic balanced cut

8For the case of q = 1
2
, given a correlation matrix Σ ∈ ℜ, one can obtain a heuristic random assignment based on the

standard random hyperplane rounding ideas (Chapter 6 of Williamson and Shmoys 2011). This random assignment
has a correlation matrix 2

π
arcsin(Σ) ⪰ 2

π
Σ, and can increase the worst-case variance considerably compared to the

worst-case variance associated with the correlation matrix Σ.
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of y—which is NP-hard in general (Spielman and Teng 2004); see Appendix B.1 for more details.

Our problem does not have this simple structure; actually, the adversarial selection of coefficients

y had made our problem more complicated than the one in Rüschendorf and Uckelmann (2002).

To minimize the worst-case variance, we need to carefully design the negative correlation among

clusters, rather than simply partitioning the clusters in a balanced way as in Appendix B.1.

Remark 2.3 (Alternative Uncertainty Sets). In this paper, we restrict attention to settings with non-

negative potential outcomes (as captured by Assumption 2.1). Importantly, our approach is general

and can be applied to other ranges of potential outcomes as well. It turns out that the choice of the

range of potential outcomes qualitatively impacts the structure of the optimal experimental design.

For instance, for the special case where the uncertainty set of each cluster i’s potential outcomes

is symmetric around zero, i.e., yi1 ∈ [−wi1, wi1] and yi0 ∈ [−wi0, wi0], an optimal experiment solv-

ing (1) simply assigns each cluster independently to treatment with probability q (see Appendix

B.2). Interestingly, this simple experimental design seems to be optimal in very restrictive settings.

When the potential outcomes do not belong to an interval symmetric around zero, e.g., as in the

setting considered in this section, more intricate designs are needed to ensure low variance in the

worst case. We revisit this point and illustrate the suboptimality of independent assignments in

the absence of symmetry in the next section as well as Section 5.

3 Independent Block Randomization

In this section, we introduce our main family of experiments that attain near-optimal solutions to

(1). To provide insights into the design of the experiments in this family, we first (in Section 3.1)

discuss the price of independence, i.e., the variance gap between the optimal solution to (1) and the

random assignment that treats clusters independently. Subsequently, in Section 3.2, we formally

define our proposed family of experiments, which are defined through a partition of clusters. We

also provide an approach to efficiently computing the optimal partition. Finally, in Appendix F,

we discuss a way to construct confidence intervals for an IBR experiment.

3.1 Price of Independence: Optimal Experiment with Equal-Sized Clusters

Before we introduce the family of IBR experiments, as a warm-up, we study the case where cluster

sizes (wi)
n
i=1 are equal. In this case, Proposition 3.1 shows that the optimal experiment randomly

assigns a fraction q of the clusters to treatment.
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Proposition 3.1 (Optimal Experiments with Equal-Sized Clusters). Suppose that the upper bounds of

the uncertainty sets (wi)
n
i=1 in (1) are equal, and without loss of generality, suppose that wi = 1 for

all i ∈ [n]. The optimal experiment solving (1) is as follows:

1. When qn ∈ N: An optimal experiment chooses qn clusters uniformly at random and assigns

them to treatment, while assigning the rest to control. The correlation coefficient of any two

assignments is σ = − 1
n−1 . Furthermore, if n is even, in the worst case, n

2 clusters take yi = 1

and the other clusters take yi = 0, and V OPT = 1
4

n2

n−1 . If n is odd, in the worst case, either

n+1
2 or n−1

2 clusters take yi = 1 and the other clusters take yi = 0, and V OPT = n+1
4 .

2. When qn /∈ N: An optimal experiment, with probability p ≜ ⌈qn⌉ − qn, chooses ⌊qn⌋ clusters

uniformly at random and assigns them to treatment, and with probability 1− p, chooses ⌈qn⌉

clusters uniformly at random and assigns them to treatment, and then assigns the rest to

control. The correlation coefficient of any two cluster assignments is σ = −nq(1−q)−p(1−p)
n(n−1)q(1−q) ∈(

− 1
n−1 , 0

)
. Let h∗ ∈ N denote the integer closest to min

{
− 1

2σ + 1
2 , n
}
. In the worst case,

h∗ clusters take yi = 1 and the rest take yi = 0, and V OPT = h∗ + h∗(h∗ − 1)σ. Moreover,

limn→∞
4V OPT

n = 1.

We prove Proposition 3.1 in Appendix B.3. Importantly, this result not only characterizes

the optimal experiment in this case, but also shows that there is an inherent gap between the

variance of the experiment that treats clusters independently and that of the optimal experiment.

Specifically, the worst-case variance of the optimal experiment asymptotically converges to n
4 , while

it is straightforward to see from (1) that the worst-case variance of the independent assignment

is exactly equal to n. Hence, there is a multiplicative gap of 4 between the two variances, which

characterizes the price of independence for solving (1).

Finally, we provide the optimal experiment when the marginal assignment probability q is equal

to 1
2 and clusters have equal sizes in Corollary 3.2, which follows directly from Proposition 3.1.

Corollary 3.2 (The Case of q = 1
2). Suppose that all the cluster sizes are equal with wi = 1 for each

i ∈ [n], and the marginal assignment probability q is equal to 1
2 . The optimal experiment solving

(1) is as follows:

1. When n is even: The optimal experiment chooses n
2 clusters uniformly at random and assigns

them to treatment, while assigning the rest to control. The correlation coefficient of any two

assignments is σ = − 1
n−1 . In the worst case, n

2 clusters take yi = 1 and the other n
2 clusters

take yi = 0, and V OPT = 1
4

n2

n−1 .
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2. When n is odd: The optimal experiment chooses n+1
2 clusters uniformly at random, assigns

them to treatment and the rest to control with probability 1
2 , and vice versa with probability 1

2 .

The correlation coefficient of any two assignments is σ = − 1
n . In the worst case, n+1

2 clusters

take yi = 1 and the other n−1
2 clusters take yi = 0, and V OPT = 1

4
(n+1)2

n .

3.2 Optimal Independent Blocks and Dynamic Programming

Proposition 3.1 shows that when clusters have equal sizes, an optimal experiment treats clusters in

an identical way, and it minimizes the correlation between assignments to any two clusters. This

smallest (negative) correlation is achieved by assigning a fraction q of the clusters to treatment

uniformly at random. In general, when cluster sizes are different, although we would like the corre-

lation to be small for any two clusters, an optimal experiment will prioritize the negative correlation

between some specific cluster pairs (e.g., when both clusters are large) over some other pairs (when

both clusters are relatively small). It may even deliberately introduce positive correlation between

some pairs of clusters in order to attain larger negative correlation between other pairs. It is not

clear what the optimal correlation among clusters would look like or how to search for it in a

computationally efficient way.

Overview of IBR Experiments Inspired by the case with equal cluster sizes, we consider a family

of simple experiments that we refer to as independent block randomization (IBR) experiments.

Specifically, in an IBR experiment, we first sort clusters in decreasing order of size. We then

partition them into blocks so that each block contains clusters of similar sizes.9 We then try to

obtain assignments of any two clusters in a block to treatment and control in a way that induces

large negative correlation. To do this, we uniformly at random treat a fraction q of the clusters

in each block, and do so independently across blocks. Note that Proposition 3.1 implies that

the aforementioned assignment attains the largest negative correlation among clusters in a block,

ignoring the differences in size. Thus, intuitively, this assignment ensures large negative correlation

when the cluster sizes in a block are not too different. The independence of assignments across

blocks, on the other hand, comes at the price of no correlation between clusters of different blocks.

A careful design of the blocks mentioned above trades off between: (i) the benefit of a larger

negative correlation within a block, and (ii) the price of independence across blocks. Specifically,

as a block contains more clusters, more clusters are negatively correlated with each other, but

simultaneously, the correlation also becomes weaker (i.e., the magnitude of the correlation becomes

9In fact, we sort before partitioning precisely because we would like to ensure similar size in the same block.
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Figure 1: Example of the correlation matrix of an IBR experiment (with four blocks, where the last block
is a single cluster). Note that for each block i, σi < 0 and |σi| decrease as the size of the block increases.

smaller; we prove this in Lemma C.1 of Appendix C). Example 3.1 illustrates this point by focusing

on two extreme cases. See also Figure 1 for an illustration of the structure of the correlation matrix

of the random assignments generated by an IBR experiment. This structure shows how our IBR

experiments control the induced negative correlation between different clusters.

Example 3.1. If there is only one block that contains all the clusters, then the assignments of any

two clusters are negatively correlated, but the correlation is only Θ
(
− 1

n

)
. This turns out to be

optimal when the cluster sizes are equal, by Proposition 3.1. If each block instead contains only two

clusters, then in the associated IBR experiment, the correlation between the assignments of these

two clusters has the largest absolute value possible (in particular, it is −1 when q = 1
2). However,

in this case, every cluster is only (negatively) correlated with the cluster in the same block, and is

independent of the remaining n − 2 clusters. More generally, as the size of a block increases, the

correlation of any two clusters in the block becomes smaller in absolute value by Lemma C.1.

We next show that the optimal partition of clusters can be obtained through the solution of

a simple dynamic program. Our approach builds on Lemma 3.3, which characterizes a worst-case

potential outcome of a block in an IBR experiment.

Lemma 3.3 (Worst-Case Potential Outcomes of a Block). Consider a block with k clusters sorted

in decreasing order of size, i.e., w1 ≥ w2 ≥ · · · ≥ wk. Let Σ ∈ ℜ denote the correlation matrix

of assignments with off-diagonal entries all equal to σ, and let r be the largest index such that

wr ≥ −2σ
∑

i≤r−1wi. Let yi = wi for all i ≤ r, and yi = 0 for all i > r. Then, y =
(
yi
)
i∈[k] is a

worst-case potential outcome of the block, i.e., it solves maxyi∈[0,wi], ∀ i∈[k] y
TΣy.
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We prove Lemma 3.3 in Appendix B.4. In an IBR experiment, the assignments to blocks are

independent; thus, the worst-case variance is simply the sum of worst-case variances of different

blocks. This fact and Lemma 3.3 together indicate that we can obtain an optimal cluster partition

in polynomial time using dynamic programming.

Specifically, given the sorted list w1 ≥ w2 ≥ . . . ≥ wn, we let Vk(h) denote the continuation

worst-case variance when there are k ∈ [n] remaining clusters [n − k + 1 : n] ≜ {n − k + 1, . . . , n}

to be partitioned and the next block contains h ∈ [k] clusters. Let Vk = minh∈[k] Vk(h) be the

worst-case variance from the optimal partition of these k clusters. The Bellman equation is

Vk = min
h∈[k]

Vk(h) = min
h∈[k]

gk(h) + Vk−h, (4)

where gk(h) is the worst-case variance of the block that contains the first h of the remaining k

clusters. Note that this quantity can be easily computed using Lemma 3.3.10 In the remainder of

the paper, we let V DP ≜ Vn denote the worst-case variance of the optimal IBR experiment.

We conclude this section with a remark that compares our independent block randomization

experiments with stratified randomization experiments.

Remark 3.1 (Comparison to Stratified Randomization). Stratified randomization experiments (Fisher

1935, Higgins et al. 2016) group (or stratify) the experimental units (usually based on their covari-

ates) and then assign treatments to each group independently. We can interpret our independent

block randomization experiment as stratification in cluster sizes wi (which may potentially also

incorporate relevant covariant information or other side information). However, the reason for

this “size stratification” in our case is very different from conventional stratified randomization.

Specifically, we stratify cluster sizes not because we assume clusters of similar size to have similar

potential outcomes (which is the usual motivation). Instead, we establish that stratification in

cluster sizes allows for reducing the worst-case variance of the estimator (see the analysis in Section

4). Actually, as can be seen from Lemma 3.3, although clusters in the same block have similar

sizes, their potential outcomes take distinct values in the worst case. Specifically, some potential

outcomes take the largest values wi, whereas the rest take zero.

10As a side note, when the marginal assignment probability q = 1
2
, it is without loss of optimality (see Lemma C.3

in the Appendix) to focus on blocks that contain an even number of clusters, except for the last block that contains
the smallest clusters (which has an odd number of clusters when n is odd). This property quarters the computational
requirement for solving the DP.
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4 Performance Analysis of the IBR Experiments

In this section, we analyze the performance of our IBR experiments. When the cluster sizes are

heterogeneous, the suboptimality of an IBR experiment derives from two sources:

(i) Assignments are independent across blocks; hence, we lose the opportunity to introduce

negative correlation between clusters of different blocks (which would yield lower total variance

in the worst-case outcome).

(ii) Within each block, the cluster sizes are not exactly the same, but we treat the clusters in an

identical way.

Our design of IBR experiments tries to mitigate both sources of suboptimality. In fact, our

analysis relies on showing that these losses can indeed be substantially reduced through careful

choices of the partitions. We consider both an approximation ratio analysis for any problem instance

(Section 4.1) and an asymptotic analysis when the number of clusters is large (Section 4.2). In

both cases, we show the worst-case variance increases only by a small amount compared to the

worst-case variance V OPT of an optimal experiment.

Remark 4.1. Throughout this section, for notational convenience, we assume clusters are sorted in

decreasing order of size, i.e., w1 ≥ w2 ≥ · · · ≥ wn.

In the analysis, instead of comparing the performance of IBR experiments to the optimal worst-

case variance V OPT directly, we compare it to a lower bound V LB of (1). The lower bound is achieved

by relaxing the outer problem to allow for any correlation matrix. More precisely, we have:

V LB ≜ min
Σ∈ℜ

max
y∈×i∈[n][0,wi]

yTΣy ≤ V OPT. (5)

The key difference of this problem from (1) is that in (5), Σ belongs to the set of all correlation

matrices ℜ, and it need not be attained by a joint binary assignment.11 As a result of this relaxation,

we have the following lemma.

Lemma 4.1 (Relaxation of (1)). Suppose that V OPT and V LB are the optimal objective values of the

min-max optimizations (1) and (5), respectively. Then, we have V LB ≤ V OPT.

11The set of all correlation matrices is equivalent to the set of symmetric positive semidefinite matrices with all
diagonal entries being one—simply because any such matrix can be induced by a joint Gaussian distribution. Note
that this set is not a polyhedron. On the other hand, the set of correlation matrices Σ(P ) with a random joint binary
assignment P ∈ Pq is indeed a polyhedron.
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4.1 Approximation Ratio Analysis

In this section, we show that a simple IBR experiment achieves a good approximation ratio for any

problem instance if the marginal assignment probability q is not very tiny; this in turn implies that

the optimal IBR experiment from solving the DP in (4) achieves a good approximation ratio as

well. For example, we show that the optimal IBR experiment has an approximation ratio of 7
3 for

q = 1
2 , 2 for q = 1

3 ,
7
3 for q = 1

4 , and
12
5 for q = 1

5 .

4.1.1 Preparation: Analysis of Independent Assignments

To start, we first consider a naive experiment that treats every cluster independently with prob-

ability q, which is equivalent to having one block for each cluster. The corresponding correlation

matrix is Σ = I, and the worst-case variance is
∑

i∈[n]w
2
i . We first provide a lower bound on V LB

and show that this naive experiment is a 4-approximation.

Lemma 4.2 (Approximation Ratio of the Independent Assignment). The worst-case variance V OPT

of an optimal experiment satisfies

max

{
w2
1,

1

4

∑
i∈[n]

w2
i

}
≤ V LB ≤ V OPT ≤

∑
i∈[n]

w2
i .

We prove Lemma 4.2 in Appendix B.5. The lower bound 1
4

∑
i∈[n]w

2
i ≤ V LB implies that the

aforementioned naive independent assignment is a 4-approximation. Note that the approximation

ratio 4 is (asymptotically) tight. To see this, consider a problem instance with n clusters where all

cluster sizes are equal to one. By Proposition 3.1, we have limn→∞

∑
i∈[n] w

2
i

V OPT = 4.

4.1.2 Analytical Tool: k-Partition IBR Experiments

We now use Lemma 4.2 as a building block to analyze a more advanced IBR experiment that groups

all fixed k clusters together, and then solves for the optimal partition for each group separately in

order to find the final blocks. We call such an experiment a k-partition IBR experiment, and we

let V k denote the worst-case variance of this experiment.

More specifically, let N =
⌈
n
k

⌉
be the number of groups. Every group h ∈ [1 :N − 1] contains

exactly k clusters (h− 1)k + i for i = 1, 2, . . . , k, and the last group h = N contains the remaining

clusters (hence, it can have fewer than k clusters). Now we solve the DP for each group separately

to obtain the optimal partition for the group, and we combine these partitions as the final partition

in the k-partition IBR experiment.
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q 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

k∗ 4 3 4 5 6 7 8 9 10

bound on V k∗

V LB
7
3 ≈ 2.33 2 7

3 ≈ 2.33 2.4 2.7 20
7 ≈ 2.86 22

7 ≈ 3.14 10
3 ≈ 3.33 65

18 ≈ 3.61

Table 1: The minimum approximation ratio bound of the k-partition IBR experiments with some specific
values of q. Here, k∗ = argmink∈N+

fq(k)
(
4
k + k−1

k

)
is the optimal value of the parameter k, and the bound

on V k∗

V LB (i.e., the third line) refers to fq(k
∗)
(

4
k∗ + k∗−1

k∗

)
.

We let fq(k) denote the worst-case variance (i.e., the optimal value of (1)) for the problem

instance with k clusters and all cluster sizes equal to one, which is easy to compute by Proposi-

tion 3.1. Lemma 4.3 bounds the approximation ratio of the k-partition IBR experiment in terms

of fq(k) for any integer k.

Lemma 4.3 (Approximation Ratio of the k-Partition IBR Experiment). For any integer k, the worst-

case variance V k of a k-partition IBR experiment satisfies

V k

V OPT
≤ V k

V LB
≤ fq(k)

(
4

k
+

k − 1

k

w2
1

V LB

)
≤ fq(k)

(
4

k
+

k − 1

k

)
,

where fq(k) is the optimal value of (1) for the problem instance with k clusters and all cluster sizes

equal to one.

We prove Lemma 4.3 in Appendix B.6. Note that when k = 1, the k-partition IBR experiment

coincides with the naive independent assignment. On the other hand, since fq(1) = 1 for any

q ∈ (0, 1), Lemma 4.3 again shows that the independent assignment is a 4-approximation.

Using Lemma 4.3, for any marginal assignment probability q, we can search over k and minimize

fq(k)
(
4
k + k−1

k

)
to find the k-partition IBR experiment that attains the minimum approximation

ratio bound. We illustrate such a minimum approximation ratio and the corresponding value of

k in Figure 2, and we provide details for some specific values of q in Table 1. As can be seen

from Figure 2, the best k-partition IBR experiment reduces the worst-case variance considerably

compared to the independent assignment (whose approximation ratio 4 is tight) at least when the

marginal assignment probability q is not that tiny, i.e., for q ∈ [0.1, 0.5].

We next consider a special case where the marginal assignment probability q equals 1
m for some

integer m. Interestingly, as can be seen from Figure 2 and Table 1, except when the optimal value

of k, denoted by k∗, is 4 for m = 2, the optimal value k∗ = m for m ∈ [3 : 10]. On the other

hand, by Proposition 3.1, as long as a block contains no more than m clusters, the correlation of

assignments between any two clusters in the block is always − 1
m−1 = − q

1−q under the uniformly

random assignment in Proposition 3.1. Thus, with m clusters, it is optimal to put all these clusters
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into one block and, as a result, them-partition IBR experiment simply groups allm clusters into one

block and, within each block, it selects one cluster uniformly at random and assigns it to treatment.

We can view the m-partition IBR experiment as a generalization of the pair-matching experiment

(to be discussed in Remark 4.4) from the case of q = 1
2 to the case of q = 1

m . Proposition 3.1 and

Lemma 4.3 directly imply an approximation ratio guarantee for such a 1
q -partition IBR experiment,

which we state in Corollary 4.4. Note that the approximation ratio guarantee in Corollary 4.4 is

only meaningful when m is sufficiently small (and hence q is sufficiently large), because the 1
q -

partition IBR experiment cannot be worse than the independent assignment, which has a tight

approximation factor 4.

Corollary 4.4 (Approximation Ratio of the 1
q -Partition IBR Experiment). Suppose that the marginal

assignment probability q is 1
m with some integer m. The m-partition IBR experiment simply groups

all m clusters into one block (except for the last block that contains the smallest clusters, which

can have fewer than m clusters), and selects one cluster from each block uniformly at random and

assigns it to treatment (except for the last block if it is not full). Moreover, if m is odd, we have

V m

V LB ≤ min
{
4, m+1

m + m2−1
4m

}
, and if m is even, V m

V LB ≤ min
{
4, m

m−1 + m
4

}
.
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Figure 2: The red dashed line with right y-axis: k∗ = argmink∈N+
fq(k)

(
4
k + k−1

k

)
is the optimal value of the

parameter k for the k-partition IBR experiment to attain the minimum approximation ratio bound, with a
given marginal assignment probability q. The blue solid line with left y-axis: The minimum approximation
ratio bound with a given marginal assignment probability q, which equals fq(k

∗)
(

4
k∗ + k∗−1

k∗

)
.

Lemma 4.3 directly implies that the optimal IBR experiment admits an improved approximation
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factor over the independent assignment for any problem instance, at least when the marginal

assignment probability is not very tiny; we state the approximation ratio guarantee for the optimal

IBR experiment in Theorem 4.5.

Theorem 4.5 (Approximation Ratio of the Optimal IBR Experiment). The worst-case variance of the

optimal IBR experiment from solving the DP satisfies

V DP

V OPT
≤ V DP

V LB
≤ min

k∈N+

V k

V LB
≤ min

k∈N+

fq(k)

(
4

k
+

k − 1

k

)
.

4.1.3 The Case of q = 1
2

We now turn to the case where the marginal assignment probability q equals 1
2 . By Corollary 3.2,

f 1
2
(k) = 1

4
k2

k−1 if k is even and f 1
2
(k) = 1

4
(k+1)2

k if k is odd. Thus, by Lemma 4.3, we have

V k

V LB ≤ k
k−1 + k

4 when k is even and V k

V LB ≤ (k+1)2

k2
+ (k+1)2(k−1)

4k2
when k is odd. Note that when k

is odd, since (k+1)2

k2
+ (k+1)2(k−1)

4k2
> k+1

k + k+1
4 , the approximation ratio bound with a k-partition

IBR experiment is always larger than the approximation ratio bound with a (k + 1)-partition IBR

experiment. Thus, we only need to focus on the case where k is even. In this case, the minimum

approximation ratio is attained with k = 4, which yields V k=4

V OPT ≤ 7
3 . The value of k = 2 yields

V k=2

V OPT ≤ 5
2 , which is slightly larger. We summarize these in Corollary 4.6.

Corollary 4.6 (Approximation Ratio Guarantee with q = 1
2). Suppose that the marginal assignment

probability q equals 1
2 . The worst-case variance V k of the k-partition IBR experiment with an even

integer k satisfies
V k

V OPT
≤ V k

V LB
≤ k

k − 1
+

k

4
· w2

1

V LB
≤ k

k − 1
+

k

4
.

The minimum approximation ratio bound is attained with k = 4, which yields V k=4

V OPT ≤ 7
3 ; this implies

that the optimal IBR experiment is a 7
3 -approximation as well. In addition, the approximation ratio

of the 2-partition IBR experiment satisfies V k=2

V OPT ≤ 5
2 .

For the case of q equal to 1
2 , as discussed earlier (and detailed in Lemma C.3 of the Appendix),

in the optimal partition from solving the DP, all blocks will have an even number of clusters (except

for the last block that contains the smallest clusters when n is odd). Thus, to obtain the optimal

partition of a set of k = 4 clusters (as required by the k-partition IBR experiment), we only need to

compare the worst-case variances between two cases: (a) a block that contains all four clusters, and

(b) two blocks with one block containing the first two clusters and the second one containing the

other two clusters. Thus, the 4-partition IBR experiment has a minimal computational requirement.
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We conclude this section with three remarks: one on the theoretical performance of our optimal

IBR experiment in Theorem 4.5 versus its numerical performance, one about our analysis for small

marginal assignment probability q, and finally one on the theoretical performance of the commonly

used pair-matching experiment (and its generalization). We also provide an upper bound on the

fq(k) function in the end (Lemma 4.7), which is useful for the asymptotic analysis in Section 4.2.

Remark 4.2 (Theoretical versus Numerical Performance Guarantees). In Theorem 4.5, we provide a

theoretical approximation ratio guarantee for the optimal IBR experiment based on analyzing a

subfamily of simpler k-partition IBR experiments. On the other hand, one may wonder how tight

these analyses are. Take the special case of q = 1
2 as an example; in Section 5.1, we construct

problem instances where the approximation ratio for the optimal IBR experiment is no better than

approximately 1.52 < 7/3, and the approximation ratio for the 4-partition IBR experiment is no

better than approximately12 1.62 < 7/3. But we do not have an example where the approximation

ratios are substantially closer to 7/3. This gap can be partially attributed to the slack in the

analysis of the k-partition IBR experiment and the improvement of the optimal IBR experiment

over the k-partition IBR experiment. Furthermore, our numerical study in Section 5 demonstrates

that the optimal IBR experiment often performs substantially better than the theoretical perfor-

mance guarantee in Theorem 4.5. This is illustrated by focusing both on a synthetic example with

randomly generated instances and on data-driven examples based on Airbnb and Facebook data.

Remark 4.3 (Analysis Slack for Small q). We would like to note that our theoretical analysis is not

tight when the marginal assignment probability q is small. By the discussion above Corollary 4.4,

it is optimal to let each block contain at least
⌊
1
q

⌋
clusters. Therefore, when q is small, we want

a large k for the k-partition IBR experiment. On the other hand, our analysis for the k-partition

IBR experiment is loose when k is large. In particular, we increase all cluster sizes in a group of k

clusters to the maximum cluster size of the group, in order to bound the worst-case variance of the

k-partition IBR experiment from above (please refer to the proof of Lemma 4.3). This yields the

k−1
k term in Lemma 4.3 (note that fq(k) = Θ(k) by Proposition 3.1 and Lemma 4.7). Although

numerical examples demonstrate that our optimal IBR experiment still reduces the worst-case

variance substantially relative to independent randomization when q is small, our current analysis

does not support this; we leave further investigations on a refined analysis to future research.

12Numerical examples in Section 5.1 also show that the approximation ratio for the optimal IBR experiment is no
better than approximately 1.49 < 2 for q = 1

3
, 1.51 < 7

3
for q = 1

4
, and 1.47 < 12

5
for q = 1

5
, and the approximation

ratio for the m-partition IBR experiment with m = 1/q is no better than approximately 1.63 < 2 for q = 1
3
, 1.55 < 7

3

for q = 1
4
, and 1.53 < 12

5
for q = 1

5
.
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Remark 4.4 (Performance Guarantees for the Pair-Matching Experiment and Its Generation). The

pair-matching experiment – or the pair experiment for short – is a commonly used heuristic (Imai

et al. 2009) that pairs similar (in terms of size and/or related covariates) clusters and randomly

assigns one cluster from each pair to treatment. In our setting, it is a special case of the IBR

experiments where each block contains two clusters and the marginal assignment probability q = 1
2 .

The correlation matrix of the assignments is a block diagonal matrix with each block being a 2× 2

dimension, the diagonal entries being 1, and the off-diagonal entries being −1. By Corollary 4.6

with k = 2, the approximation ratio of the pair experiment is 5/2, which is slightly larger than

the 7/3 approximation ratio guarantee for the optimal IBR experiment. On the other hand, for

the special case of equal cluster sizes (and assuming n is even), the worst-case variance of the pair

experiment is n
2 . Thus, Corollary 3.2 implies that the multiplicative gap is 2 relative of the optimal

IBR experiment. The pair experiment is not asymptotically optimal in this case as n grows large,

whereas the optimal IBR experiment is asymptotically optimal under mild regularity conditions on

cluster sizes, as we discuss in Section 4.2. Finally, for the special case of q = 1
m with some integer

m, we can consider a generation of the pair-matching experiment that groups m clusters of similar

size together and randomly assigns one cluster from each group to treatment. As we discussed

earlier, this is equivalent to the m-partition experiment, and Corollary 4.4 provides approximation

ratio guarantees for such an experiment provided that m is small (e.g., m ≤ 10).

Finally, in Lemma 4.7, we show that the fq(k) function grows linearly in k; we will use this rate

property in our asymptotic analysis in Section 4.2 shortly. We prove Lemma 4.7 in Appendix B.7.

Lemma 4.7. fq(k) ≤ 1
4 (k + C(q)), where C(q) is a constant that depends only on q.

4.2 Asymptotic Optimality

In our asymptotic analysis, we consider the regime where the number of clusters n grows to in-

finity and there is no dominating cluster, in the sense that w2
1 = o

(∑
i∈[n]w

2
i

)
. Since V OPT =

Θ
(∑

i∈[n]w
2
i

)
by Lemma 4.2, this intuitively means that no cluster is large enough to have a

substantial effect on the variance of the estimator.

Under this regime, Lemma 4.3 immediately implies that any k-partition IBR experiment with

k = Θ

(√∑
i∈[n] w

2
i

w2
1

)
is asymptotically optimal. To see this, note that by Lemmas 4.2, 4.3, and 4.7,
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we have

V DP − V LB

V LB
≤ V k − V LB

V LB
≤
(
k + C(q)

)(1

k
+

k − 1

k

w2
1∑

i∈[n]w
2
i

)
− 1

≤ C(q)

k
+ k · w2

1∑
i∈[n]w

2
i

+ C(q) · w2
1∑

i∈[n]w
2
i

= O

(√
w2
1∑

i∈[n]w
2
i

)
→ 0,

where the last equality is attained, e.g., if we let k be the integer closest to

√∑
i∈[n] w

2
i

w2
1

. Since

the optimal IBR experiment achieves a smaller variance than the k-partition IBR experiment, it is

asymptotically optimal as well, as we establish next.

Theorem 4.8 (Asymptotic Performance of the Optimal IBR Experiment). The optimal IBR experi-

ment is asymptotically optimal when the number of clusters n grows large and w2
1 = o

(∑
i∈[n]w

2
i

)
.

Moreover, the convergence rate satisfies

V DP − V LB

V LB
= O

(√
w2
1∑

i∈[n]w
2
i

)
→ 0.

We next illustrate by Example 4.1 that the aforementioned “no dominating cluster” condition

is also necessary for any IBR experiment to be asymptotically optimal.

Example 4.1. Consider a problem instance where the marginal assignment probability q = 1
2 and

the cluster sizes form a geometric sequence, i.e., wi = βn−i for cluster i ∈ [n], and we let β = 5
4 . It

can be shown that in the optimal partition, all blocks contain four clusters. More precisely, suppose

that n is divisible by four; then every block h contains clusters 4h− 3 to 4h for 1 ≤ h ≤ n/4. Note

that each block essentially contains the same clusters up to a scaling. Since the optimal IBR

experiment randomly assigns half of the clusters in a block to treatment, it increases the worst-case

variance of each block by a constant fraction of 10.7% compared to an experiment that assigns

treatment to clusters in a block in an optimal way, and does so independently across blocks. Thus,

the optimal IBR experiment cannot be asymptotically optimal as n grows large. The no dominating

cluster condition is violated because
∑n

i=1w
2
i = β2n−1

β2−1
and w2

1 = β2n−2 have the same order. We

provide further details in Appendix B.8.
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4.2.1 Asymptotic Optimality in the High-Multiplicity Model

The asymptotic optimality in Theorem 4.8 is for a general setting, and we can obtain a stronger

result under additional assumptions. Specifically, for a high-multiplicity model where cluster sizes

take values in a finite set and the number of clusters of each size is a fixed proportion of the total

number of clusters n, a simple IBR experiment that has one block for each cluster size increases

the worst-case variance only by a constant that is independent of n, as we show in Theorem 4.9.

Theorem 4.9 (Improved Performance Guarantee in the High-Multiplicity Model). Suppose that cluster

sizes take only K finite values (wi)i∈[K] with w1 ≥ w2 ≥ · · · ≥ wK . Let nk be the number of clusters

of size wk and consider a simple IBR experiment that has one block for each cluster size. The

worst-case variance V of this experiment satisfies

V − V LB ≤ 1

4

∑
k∈[K]

w2
k ·

(
min

{
nk,

w2
1n

w2
knk

}
+

2

q(1− q)
+ 4

)
,

where the right-hand side scales with the total number of clusters n at most at a square-root rate

(whereas, the lower bound satisfies V LB = Θ(n)).

If, in addition, each nk = αkn is a fixed proportion αk ∈ (0, 1) of the total number of clusters

n, then

V − V LB ≤
∑
k∈[K]

{
w2
1

4αk
+ w2

k

(
1

2q(1− q)
+ 1

)}
,

which is a constant independent of n.

We prove Theorem 4.9 in Appendix B.9. When each block contains clusters of equal size, there

is no loss of optimality from ignoring the cluster size differences within a block (i.e., the second

source of the performance loss). Thus, Theorem 4.9 indicates that the loss from independent

assignments across blocks (i.e., the first source of the performance loss) can be made small (and

in fact asymptotically negligible) with an IBR experiment. Intuitively, if an experiment is close to

the optimal experiment, the worst-case potential outcomes of the two experiments are close as well.

Note that we have a complete characterization of the worst-case potential outcome with an IBR

experiment (Proposition 3.1 and Lemma 3.3). In our proof, we bound the worst-case variance gap

between the simple IBR experiment and the optimal experiment by considering both experiments

against the worst-case potential outcome of the simple IBR experiment, and by using the fact that

the correlation matrix of any experiment is positive semidefinite.
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4.2.2 Simplicity versus Complexity: The IBR Experiment with a Logarithmic Partition

Although the k-partition IBR experiment with k = Θ
(√∑

i∈[n]w
2
i /w

2
1

)
is asymptotically optimal

under the no dominating cluster condition, to compute its partition, we need to solve a DP for every

group that contains k = Ω(1) clusters. We next show that a very simple logarithmic partition that

requires no explicit optimization is sufficient for an IBR experiment to be asymptotically optimal.

However, the convergence rate of the corresponding experiment could be slower and we require a

slightly stronger version of the no dominating cluster condition.

Let us start by introducing the slightly stronger version of the no dominating cluster condition

needed for our analysis of the aforementioned experiment:
∑n

i=1 w
2
i

w2
1

= Ω
(
nc
)
for some constant

c > 0. We consider a simple logarithmic partition in which the ratio of the largest to the smallest

cluster sizes in a block is upper-bounded across blocks. In particular, we define two parameters

δ1, δ2 ∈ (0, 1) to be specified later. We first include all clusters with sizes wi ≤ w̄ ≜
√∑n

i=1 w
2
i

n1+δ1
in

one block, and label this as block zero. The clusters in this block are small enough to have little

effect on the variance of the estimator. We then iteratively go through the remaining clusters in

decreasing order of size to create blocks. Specifically, in each step we focus on the clusters that

are not yet assigned to a block, pick the largest one, and include all of the clusters whose sizes are

at least 1
α times the size of this cluster in a block. Here, α is a parameter given by α = 1 + n−δ2 .

We label these blocks from one to K, in decreasing order of size from the largest cluster in each

block. Theorem 4.10 shows that such a logarithmic partition induces an asymptotically optimal

IBR experiment when δ1 and δ2 are chosen properly.

Theorem 4.10 (Asymptotic Performance of the IBR Experiment with a Logarithmic Partition). Suppose

that
∑n

i=1w
2
i /w

2
1 = Ω(nc) with some constant c > 0. Consider the above logarithmic partition with

parameters δ1 = δ2 = c/4, and let V denote the worst-case variance of the logarithmic-partitioning

IBR experiment. This logarithmic-partitioning IBR experiment is asymptotically optimal, and the

convergence rate satisfies
V − V LB

V LB
= O

(
n− c

4 lnn
)
.

We prove Theorem 4.10 in Appendix B.10. Because of the specific partition we chose, clusters in

the same block have similar sizes (the ratio of sizes of the largest to the smallest clusters in a block

is at most α, which goes to one as n grows large). This makes the second source of performance loss

small. In our proof, we consider a perturbed problem where we decrease all cluster sizes in a block

to the minimum cluster size of the block. This is only a small perturbation and does not change

the worst-case variance of an experiment much, as clusters in a block are similar in size. After the
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perturbation, clusters in a block have equal sizes, and we can adopt the analysis of Theorem 4.9.

5 Numerical Examples

In this section, we examine the performance of our IBR experiment on two numerical examples:

a synthetic example with randomly generated instances (Section 5.1) and a data-driven example

based on real Airbnb data (Section 5.2). Moreover, we compare its performance with heuristic

experiments such as (i) independent cluster-based randomization, (ii) the experiment that uniformly

at random assigns a fixed fraction of the clusters to treatment, and (iii) the (generalized) pair-

matching experiment. We illustrate that the worst-case variance of our IBR experiment is small

compared to these heuristic experiments and is close to the worst-case variance of the optimal

cluster-based experiment.

In Appendix E, we consider a third example based on Facebook data. In addition to comparing

the worst-case variances, we assume that potential outcomes are random draws from a given distri-

bution, and numerically compare the “average case” performances of these experiments. Our results

indicate that the IBR experiment still reduces the variance substantially relative to independent

cluster-based randomization and improves upon other heuristic experiments.

5.1 Synthetic Examples with a Small Number of Clusters

We first consider randomly generated instances of the cluster-based experimental design problem

with number of clusters n ∈
{
6, 8, 10, 12

}
and marginal assignment probability q ∈

{
1
2 ,

1
3 ,

1
4 ,

1
5

}
.

For each fixed value of n and q, we generate i.i.d. cluster sizes, each uniformly at random between 1

and 100, i.e., wi ∼ Unif
{
1, . . . , 100

}
. We create 105 samples for Monte Carlo simulation. For each

sample, we calculate: (a) the worst-case variance V DP of the optimal IBR experiment (by solving

the DP of Section 3), (b) the worst-case variance V OPT of the optimal cluster-based experiment,

and (c) the worst-case variance V k=k∗ of the k-partition IBR experiment using the optimal value of

k (which we denote by k∗) that attains the minimum approximation ratio bound in Theorem 4.5.

As discussed earlier, the optimization problem of solving the optimal worst-case variance V OPT

(and the corresponding experiment) can be reformulated as a linear program with exponentially

many variables/constraints in (6) in Appendix B.3; the aforementioned values of n are small enough

so that we are able to solve this linear program. The k-partition IBR experiments are our main

analytical tool in Section 4. Recall that from Table 1, the optimal value k∗ is equal to 4 for q = 1
2 ,

and equal to 1
q for the other values of q. Finally, for the case of q equal to 1

2 , we also calculate: (d)
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the worst-case variance V k=2 of the k-partition IBR experiment with k = 1
q = 2 (which corresponds

to the pair-matching experiment in Remark 4.4).

In Figure 3, we draw the box plots of the ratios V DP

V OPT and V k=k∗

V OPT over the 105 samples for each

fixed q and n, and we report the max values of these ratios in Table 2. Overall, for each fixed q,

the optimal IBR experiment performs quite well and in most instances it increases the worst-case

variance only by at most 50%. Notably, this is substantially better than the approximation ratio

guarantee in Theorem 4.5 (and Table 1).

q 1/2 1/3 1/4 1/5

max of V DP/V OPT 1.521 1.491 1.506 1.470

max of V k=k∗/V OPT 1.617 1.630 1.549 1.527

q 1/2

max of V k=2/V OPT 2.065

Table 2: Maximum values of V DP/V OPT and V k/V OPT for randomly generated examples for different q’s.

5.2 The Airbnb Example

Next, we examine a data-driven example based on Airbnb data. While our Airbnb example is

relatively smaller, we also consider another example that involves a larger Facebook subnetwork of

one hundred US universities in Appendix E. The Airbnb example uses data from the Inside Airbnb

website (InsideAirbnb 2016). This website collects detailed information of listings from the online

hospitality platform Airbnb, including the longitude/latitude coordinates of the listing, the room

type, capacity, price-per-night, and the minimum and maximum number of nights to stay. We use

all the listings in the Bay area (California, United States) that are collected by Inside Airbnb in our

experiment. There are in total 16, 010 listings, which include listings in San Francisco, Oakland,

San Mateo County, and Santa Clara County. Figure 5 in Appendix D depicts the geographical

locations of these listings.

Extracting Clusters We use a similar approach as in Holtz and Aral (2020) to partition the listings

into well-separated clusters. To do so, we first construct an interference network among the listings,

where each node represents a listing and there is an edge between two listings if they are likely

to substitute (and hence interfere with) each other. Specifically, we assume that there is an edge

between two listings if all of the following six criteria are satisfied:

1. The two listings are either both in San Francisco or both outside San Francisco;

2. The two listings are within 1 mile of straight-line distance from each other if both are in San

Francisco, and are within 5 miles of straight-line distance if both are outside San Francisco;

28



6 8 10 12

1

1.2

1.4

1.6

1.8

2

(a) q = 1
2

6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

1.6

(b) q = 1
3

6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

(c) q = 1
4

6 8 10 12

1

1.1

1.2

1.3

1.4

1.5

(d) q = 1
5

Figure 3: For each fixed number of clusters n: (a) draws the box plots of the ratios V DP/V OPT (left),
V k=4/V OPT (middle) and V k=2/V OPT (right) with q = 1

2 , and (b)–(d) draw the box plots of the ratios
V DP/V OPT (left) and V k=m/V OPT with m = 1

q (right) with q = 1
3 ,

1
4 and 1

5 , respectively. In each box plot,
the central red edge indicates the median, the bottom and top blue edges of the box indicate the 25th and
75th percentiles, and the bottom and top black edges outside the box indicate the minimum and maximum
extreme values of the ratio, all over the 105 samples.

3. The two listings have the same room type;

4. The two listings have overlap with respect to the feasible number of nights to stay (i.e., for

each listing, its minimum number of nights to stay is no larger than the maximum number of

nights to stay of the other listing);
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5. The capacity of one listing is no more than twice the capacity of the other listing;

6. The price-per-night of one listing is no higher than twice the price-per-night of the other one.

In other words, we assume that San Francisco is a disjoint submarket. Moreover, two listings

interfere with each other if they are geographically close, have the same room type, have overlap

in the number of nights to stay, and are comparable in terms of capacity and price-per-night.

We then apply the well-known Louvain algorithm (Blondel et al. 2008) to partition the inter-

ference network into clusters of varying sizes.13 We choose the ten largest clusters from the output

for our experiment; the sizes (i.e., number of listings) of these ten clusters are:

2566, 2100, 2093, 1908, 1629, 1535, 1390, 1181, 590, 518.

Note that these ten clusters already cover 97% of all the listings, and none of the remaining clusters

is larger than 4.8% of the largest cluster. We visualize these ten clusters in Figure 6 and provide

more details of these clusters in Table 4 in Appendix D.

The n = 10 clusters separate well from each other. Specifically, 77% of the listings connect only

to other listings in the same cluster. In most of the remaining listings, only a small fraction of their

connections are from a different cluster; please refer to Figure 7 in Appendix D for a histogram of

fraction of connections from a different cluster for these listings. In what follows, we assume that

the interference among clusters is relatively small and can be ignored, and we evaluate the worst-

case variances of various experiments on these ten clusters. This assumption is particularly valid

when we consider exposure models where the outcome of a listing can be affected by its neighbors

only if at least a certain fraction of them have a different treatment/control assignment.

Comparing Cluster-Based Experiments We consider the case where the marginal assignment

probability q is equal to 1
2 , and we assume that the upper bounds wi1 and wi0 of the cluster-

level treatment and control potential outcomes (and hence the upper bound wi in (1)) are both

proportional to the number of listings in cluster i.

Although we can solve an optimal cluster-based experiment with n = 10 clusters, this exper-

iment results in a complex randomized assignment (see Table 5 in Appendix D). Specifically, the

experiment randomizes over 53 different possible assignment vectors (where the number of treated

13This is a classic approach to extracting clusters in large networks. It tries to construct a partition of nodes
by maximizing modularity, i.e., the fraction of edges that remain within cluster/partition relative to a random
distribution of edges. Modularity maximization is itself a computationally challenging problem; thus, the algorithm
relies on a greedy heuristic for this purpose. See Blondel et al. (2008) for details.
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clusters varies between 4 and 6), and chooses different probabilities for these vectors without follow-

ing any clear patterns. It even deliberately introduces some amount of positive correlation between

small clusters to attain a larger negative correlation between some pairs of large and small clusters.

In particular, the correlation matrix of this assignment is:

ΣOPT =



1 -0.251 -0.250 -0.220 -0.186 -0.172 -0.155 -0.145 -0.068 -0.073

-0.251 1 -0.172 -0.162 -0.134 -0.126 -0.109 -0.066 -0.031 -0.044

-0.250 -0.172 1 -0.161 -0.133 -0.126 -0.108 -0.131 -0.057 -0.045

-0.220 -0.162 -0.161 1 -0.112 -0.102 -0.099 -0.097 -0.034 -0.049

-0.186 -0.134 -0.133 -0.112 1 -0.086 -0.067 -0.060 -0.034 -0.057

-0.172 -0.126 -0.126 -0.102 -0.086 1 -0.071 -0.065 -0.036 0.007

-0.155 -0.109 -0.108 -0.099 -0.067 -0.071 1 -0.058 -0.040 0.008

-0.145 -0.066 -0.131 -0.097 -0.060 -0.065 -0.058 1 -0.047 0.009

-0.068 -0.031 -0.057 -0.034 -0.034 -0.036 -0.040 -0.047 1 0.004

-0.073 -0.044 -0.045 -0.049 -0.057 0.007 0.008 0.009 0.004 1



.

As can be seen from the above matrix and the details in Appendix D.2, the optimal experiment

has a fairly complicated correlation structure that makes it hard to interpret.

By contrast, the optimal IBR experiment—which is obtained by solving the DP presented

earlier—has only three blocks; it simply places the first four clusters in one block, the next four

clusters in a second block, and the last two clusters in the final block. Then, it randomly assigns half

of the clusters (chosen uniformly at random) in each block to treatment. Thus, unlike the optimal

cluster-based experiment, the optimal IBR experiment is easy to interpret: it pools clusters of

similar size together in the same block, and then in each block pretends that the cluster sizes are

the same and runs the optimal cluster-based experiment accordingly inside the block. The worst-

case variance of this experiment increases the worst-case variance by V DP−V OPT

V OPT = 30.8% relative

to the optimal cluster-based experiment.

We also compare our design with three natural heuristics:

1. HALF: The simple experiment that randomly assigns half of the clusters to treatment (i.e., an

IBR experiment with only one block);

2. PAIR: The pair-matching experiment that sorts the clusters based on their sizes, pairs each

cluster with an odd index in the sorted list to the next cluster with an even index, and finally

randomly assigns one cluster from each pair to treatment (i.e., an IBR experiment with each

block containing two clusters);

3. IND: The naive experiment with an independent cluster-based assignment (which assigns each
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cluster to treatment or control independently with probability 1/2).

The three experiments increase the worst-case variance by V half−V OPT

V OPT = 50.8%, V pair−V OPT

V OPT =

87.5%, and V ind−V OPT

V OPT = 229.9%, respectively. This example illustrates that not only is the IBR

experiment considerably easier to compute and implement than the optimal cluster-based assign-

ment, but it also admits a worst-case variance that increases that of the optimal experiment by

only a mild amount. At the same time, other simple heuristic designs yield considerably higher

worst-case variances. For further details on this example see Appendix D.

6 Conclusion and Further Directions

We have considered the problem of designing a randomized experiment over a set of disjoint clusters

to minimize the variance of an unbiased Horvitz–Thompson estimator that estimates the total

market effect. We formulate the problem as robust optimization against the adversarial selection

of potential outcomes. An optimal cluster-based assignment is computationally expensive to solve,

and can be difficult to implement due to the required complicated correlation structure. Motivated

by this, we develop a family of simple independent block randomization experiments that are

easy to compute and interpret. These experiments are optimal when all clusters have identical

sizes. More generally, we show that IBR experiments are asymptotically optimal (in the number

of clusters) under a mild no dominating cluster condition and constitute a good approximation

for any problem instance when the marginal assignment probability is not very tiny. In general

settings, the suboptimality originates from the loss both due to independence across blocks and due

to ignoring the cluster size differences within a block. Our results indicate that this suboptimality

can be made small with a careful partitioning of clusters into blocks.

In our model, we assume that the marginal assignment probability q is given, whereas, in

practice, the decision maker may also want to incorporate q as a decision variable. The corre-

sponding optimal cluster-based experiment becomes computationally even harder to solve because

it no longer admits a linear programming formulation, and the objective is generally not a convex

function of the marginal probability q. Since it is fairly easy to solve an optimal IBR experiment

with a given q (by solving the DP in (4)), we can do 1-dimensional search to find an optimal value

for q such that the worst-case variance of the optimal IBR experiment is minimized. Our analysis

implies that such an IBR experiment is approximately and asymptotically optimal even compared

to the optimal cluster-based experiment that optimizes over the marginal probability q as well.
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A More on Related Literature

Foundations of Experimental Design Experimental design has found far-reaching applications

to guide decision making in areas ranging from medical trials to social sciences, and recently in

online marketplaces and social networks. It is grounded in causal inference, but instead of inferring

causality from purely observational data, a decision maker can choose how to gather data to gain

more statistical efficiency and more convincing empirical evidence of causality. The process often

involves randomization, and a more careful design of randomization based on optimization helps to

maximize the statistical power. Great expositions of related topics include Owen (2020), Kohavi

et al. (2020), and Imbens and Rubin (2015).

Regression Adjustment in Experimental Design There is a rich literature on variance reduction

via regression adjustment with covariate information in randomized experiments (e.g., Lin 2013,

Jin and Ba 2021, and the references therein). These works fix the joint treatment assignment to

be completely random and consider the best analysis (i.e., the estimator) to minimize the variance

in the asymptotic regime (under certain settings). They show that agnostic regression can reduce

variance. Our work takes the opposite direction. Specifically, we fix the estimator (i.e., we delib-

erately use a common estimator—the simple unadjusted Horvitz-Thompson estimator) and study

the best design. We view this as a building block that might eventually enable combining the two

steps and optimizing them jointly. Another distinction is that we provide a bound on performance

loss for any problem instance, and such a bound implies that our design is asymptotically optimal

under the adversarial model. By contrast, the regression adjustment literature has mainly focused

on the asymptotic analysis.

Pair-Matching Experiments The pair-matching experiment pairs similar (in terms of size and/or

related covariates) clusters and randomly assigns one cluster from each pair to treatment. It is

a special case of the IBR experiments where each block contains two clusters and the marginal

assignment probability q = 1
2 . Imai et al. (2009) recommend a pair-matching experiment if cluster-

based randomization is used. While the authors do not provide a theoretical justification for this

recommendation, they offer empirical evidence for the usefulness of this design based on comparison

with other heuristic experiments. Our work, by contrast, provides a theoretical foundation for the

aforementioned design. Specifically, we show that an optimal IBR experiment can achieve much

of the benefit from the optimal (correlated) randomized assignment across clusters, and is asymp-

totically optimal when the number of clusters grows large under a mild regularity assumption on
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cluster sizes. On the other hand, although the pair-matching experiment is not asymptotically op-

timal, its worst-case variance is guaranteed to be within 5
2 of the variance of the optimal experiment

(Remark 4.4), which is slightly larger than that of the optimal IBR experiment. Finally, Bai (2022)

shows that certain pair-matching experiments are optimal under stratified randomization (our IBR

experiments take the same form; please refer to Remark 3.1) using a different sampling-based model

where units’ potential outcomes are independently sampled.

Alternative Approaches to Experimental Design Other recent papers have considered models in

which a covariate of a unit is correlated with the potential outcome in a certain way. The optimal

experiment usually involves covariate balancing, such that the treatment and control groups are

similar in terms of the covariates (Bertsimas et al. 2015, Bertsimas et al. 2019, Kallus 2018, Bhat

et al. 2020, and Harshaw et al. 2019). We instead work with a model of potential outcomes with

minimal assumptions on their ranges (nevertheless, these ranges can still be inferred from the

covariate information).

The rich literature on online learning and multi-armed bandits (see, e.g., Lattimore and Szepesvári

2020 and Slivkins 2019 for surveys) can also be viewed as a form of adaptive and sequential ex-

perimental design. There, the decision maker is allowed to switch between variants (i.e., arms),

the system is assumed to be stationary and have rapid feedback (i.e., no carryover effect), and

the objective is to find the best variant with minimum cumulative regret or number of trials; see,

e.g., Hadad et al. (2019) and Bibaut et al. (2021). Finally, we point out that the experimental

design problem of minimizing the variance of an (unbiased) estimator is also very related to various

variance-reduction methods in the simulation literature (e.g., Asmussen and Glynn 2007).

B Proofs

B.1 Details of Remark 2.2

Suppose there are n Bernoulli random variables Z = (Zi)
n
i=1, each with a marginal probability

P[Zi] =
1
2 . The joint distribution of Z that minimizes the variance Var

[∑n
i=1wiZi

]
(with known

weights wi) is as follows: partition the weights {wi} into two groups as even as possible, then

randomly select one group with probability 1
2 , let Zi = 1 for all units in that group and Zi = 0 for

the rest units.

Proof. For any joint distribution of Z = (Zi)i∈[n] with P[Zi] =
1
2 for all i ∈ [n], the mean value is

fixed, i.e., E[
∑

i∈[n]wiZi] =
1
2

∑
i∈[n]wi. For a set S ⊆ [n], let w(S) ≜

∑
i∈S wi denote the sum of
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weights of units in set S and d(S) ≜
∣∣∣w(S)− 1

2

∑
i∈[n]wi

∣∣∣ denote the absolute difference between

the weight of set S and the mean value 1
2

∑
i∈[n]wi. Let S∗ ≜ argminS⊆[n]d(S) and d∗ = d (S∗);

clearly, we have w(S∗) = w
(
[n]\S∗) ≤ w(S) for any set S ⊆ [n], and

(
S∗, [n]\S∗) is a balanced

partition of {wi}.

On the other hand, the variance satisfies

Var
[ n∑

i=1

wiZi

]
= E

[
d
({

i : Zi = 1
})2] ≥ d∗,

where the inequality holds by the definition of d∗. Furthermore, if all units i ∈ S∗ take Zi = 1 and

the rest take Zi = 0 with probability 1
2 , and vice versa with probability 1

2 , the equality is attained;

thus, this joint random assignment satisfies P[Zi] =
1
2 for all units i ∈ [n], and it minimizes the

variance.

B.2 Details of Remark 2.3

Suppose that the uncertainty set of each cluster i’s potential outcomes is yi1 ∈ [−wi1, wi1] and

yi0 ∈ [−wi0, wi0]; then the constraint in (1) requires yi ∈ [−wi, wi] for each cluster i, with wi =√
q(1− q) ·

(
wi1
q + wi0

1−q

)
. In this case, we claim that the optimal experiment is to simply assign

treatment to each cluster independently with probability q. The correlation matrix with such

independent assignment is the identity matrix, i.e., Σ∗ = I. The worst-case potential outcome is

yi = wi for each cluster i, and the worst-case variance is yTΣ∗y =
∑

i∈[n]w
2
i .

We now show no experiment can achieve a worst-case variance strictly smaller than
∑

i∈[n]w
2
i .

To see this, consider any feasible experiment and let Σ denote the corresponding correlation matrix.

Consider the following randomized potential outcomes with Yi being either wi or −wi with equal

probability, and let these Yi be independent. Then, E
[
Y 2
i

]
= w2

i and E
[
YiYk

]
= 0 for any i ̸= k.

Thus, letting Y = (Yi)i∈[n] ∈ Rn be the concatenation, we have

max
y∈×i∈[n][0,wi]

yTΣy ≥ E
[
Y TΣY

]
=
∑
i∈[n]

w2
i ,

which clearly shows the optimality of independently assigning treatments to each cluster.

B.3 Proof of Proposition 3.1

Since the set of joint assignment distributions Pq is a polyhedron and Σ(P ) is a linear map of

a distribution P ∈ Pq, we can write (1) as a linear program with exponentially many decision
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variables and constraints as in (6), i.e.,

minimize
P∈Pq , z∈R

z

subject to z ≥ yTΣ(P )y, ∀ y ∈ ×
i∈[n]

{
0, wi

}
,

(6)

where we have polyhedral constraints of Pq and we have one constraint for each extreme point of

the potential outcomes’ uncertainty set. This formulation also implies that a convex combination

of optimal experiments is an optimal experiment as well.

Since clusters have equal sizes, this observation implies that given any optimal experiment, we

can always construct another optimal experiment that treats clusters in an identical way. As a

result, it is without loss of generality to assume that σik = σ for any two clusters. Thus, the

variance of the estimator with a given set of potential outcomes becomes

yTΣy =
∑
i∈[n]

y2i + σ
∑
i∈[n]

∑
[n]∋k ̸=i

yiyk.

Since all of the potential outcomes are nonnegative, the optimal experiment tries to make σ as

small as possible.

Let S =
∑

i∈[n] Zi denote the total number of clusters that receive treatments. We have

Var[S] = q(1− q)
[
n+ n(n− 1)σ

]
,

simply because Cov [Zi, Zj ] = q(1−q)σ for any two clusters i ̸= j. Thus, to minimize the correlation

σ, it is equivalent to minimizing the variance of the summation S. Since the mean value E[S] =

qn is fixed, to minimize the variance Var[S], the (exchangeable) joint assignment should let the

summation S concentrate around the mean as much as possible.14

Case One: Suppose that qn is an integer. Since Var[S] ≥ 0, we have σ ≥ − 1
n−1 . The equality

is attained when S is constant with probability one, and this can be achieved by assigning qn

clusters to treatment uniformly at random. We next study the worst-case potential outcomes and

the worst-case variance. Specifically, let h ∈ N be the number of clusters that have an outcome

14Similar problems are studied under more general marginal distributions (i.e., beyond Bernoulli distributions) in
Rüschendorf and Uckelmann (2002) and Section 3.6 of Rachev and Rüschendorf (1998).
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yi = 1, and suppose that the other clusters have the outcome yi = 0. Then,

V OPT = max
h∈[0:n]

h+ h(h− 1)σ. (7)

Denote by h∗ ∈ [0 : n] the integer that maximizes this quantity; it is easy to see that h∗ is the

integer closest to − 1
2σ + 1

2 = n
2 . Hence, when n is even, we have h∗ = n

2 and V OPT = 1
4

n2

n−1 ; and

when n is odd, h∗ is either n+1
2 or n−1

2 , and V OPT = n+1
4 .

Case Two: Suppose that qn is not an integer. Let p = P[S < qn], s = E[S|S < qn], and

s̄ = E[S|S > qn]. Since E[S] = qn, by the law of total expectation, we have

p · (qn− s) = (1− p) · (s̄− qn). (8)

Moreover, by the law of total variance,

Var[S] ≥ p(qn− s)2 + (1− p)(s̄− qn)2 = (qn− s)(s̄− qn), (9)

where the equality follows from (8), and an equality is attained at the inequality if S is a constant

conditioning on S < qn and S > qn, respectively.

Since the number of clusters in treatment S takes integral values, we have s ≤ ⌊qn⌋ and s̄ ≥ ⌈qn⌉.

As a result, from (9), the optimal experiment picks s = ⌊qn⌋ and s̄ = ⌈qn⌉ = s+1, and it uniformly

at random treats s clusters (and thus let S = s) with probability p and uniformly at random treats

s̄ units (and thus let S = s̄) with probability 1− p. Moreover, by (8), p = s̄−qn
s̄−s = ⌈qn⌉ − qn. The

correlation of any two assignments is

σ =
p · s

n · s−1
n−1 + (1− p) · s̄

n · s̄−1
n−1 − q2

q(1− q)
= −nq(1− q)− p(1− p)

n(n− 1)q(1− q)
. (10)

To see that σ < 0, it suffices to show that nq(1 − q) − p(1 − p) > 0. First, if qn < 1, then s = 0,

s̄ = 1, and p = 1 − qn; thus, nq(1 − q) − p(1 − p) = n(n − 1)q2 > 0. On the other hand, suppose

that qn > 1. Then, since qn > 1 > max{p, 1 − p} and 1 − q ≥ 1
2 ≥ min{p, 1 − p}, we again have

nq(1 − q) > p(1 − p). The fact that σ > − 1
n−1 follows from (10) as p = ⌈qn⌉ − qn ∈ (0, 1). Also

note that in (10), σ = − 1
n−1 if p = ⌈qn⌉ − qn = 0, which happens when qn is an integer; thus, (10)

also covers Case One.

Finally, let h∗ denote the integer closest to min
{
− 1

2σ + 1
2 , n
}
. By (7), in the worst case, h∗
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clusters have the outcome yi = 1 and the other clusters have the outcome yi = 0. When n → ∞,

we have σ → − 1
n−1 by (10) and therefore following a similar analysis to Case One, V OPT → n

4 .

B.4 Proof of Lemma 3.3

Since the objective of maxyi∈[0,wi] y
TΣy is jointly convex in y, in the worst case, yi ∈ {0, wi} for

each cluster i ∈ [k]. We first prove that there exists a worst-case potential outcome y such that

yi = wi for i ≤ r for some integer r ∈ [k], and yi = 0 for i > r. If not, then for any worst-case

potential outcome y, there exists indices i < j such that yi = 0 and yj = wj , whereas wi ≥ wj .

Since all the off-diagonals of the correlation matrix Σ have the same value of σ, the objective does

not change if we instead swap yi and yj , and let yi = wj ∈ [0, wi] and yj = 0. We can further

(weakly) increase the objective by setting yi to one of its extreme values, i.e., yi = wi or yi = 0.

By iterating this process, we end up with a worst-case outcome that satisfies our desired property.

It remains to determine the value of r. Let y denote the worst-case potential outcome vector

such that yi = wi for i ≤ r and yi = 0 for i > r. Note that

yTΣy =
∑
i∈[k]

y2i + σ ·
∑
i∈[k]

∑
[k]∋j ̸=i

yiyj .

Observe that if we update yi = 0 for some cluster i ≤ r, the variance changes by

−w2
i − 2σ

∑
j≤r and j ̸=i

wiwj ≤ 0.

Similarly, if we set yi = wi for some cluster i > r, the variance changes by

w2
i + 2σ

r∑
j=1

wiwj ≤ 0.

Together these imply that

∀ i ≤ r : wi ≥ −2σ
∑

j≤r and j ̸=i

wj , (11)

∀ i > r : wi ≤ −2σ

r∑
j=1

wj . (12)

Let r⋆ be the largest index such that wr⋆ ≥ −2σ
∑

i≤r⋆−1wi. Since the cluster sizes are de-

creasing, r⋆ satisfies (11) and (12). Moreover, if wr⋆ > −2σ
∑

i≤r⋆−1wi, r = r⋆ is the only integer
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that satisfies both (11) and (12), and hence corresponds to a worst-case potential outcome. If

wr⋆ = −2σ
∑

i≤r⋆−1wi, then both r = r⋆ and r = r⋆ − 1 satisfy (11) and (12), and they both

constitute a worst-case potential outcome.

B.5 Proof of Lemma 4.2

The lower bound w2
1 ≤ V LB in Lemma 4.2 is trivial because yTΣy = w2

1 with the outcome vector

y such that y1 = w1 and yi = 0 for all i ≥ 2, for any correlation matrix Σ. Thus, we only need to

prove the inequality 1
4

∑
i∈[n]w

2
i ≤ V LB.

To prove this, consider the following randomized potential outcomes where each Yi is either 0

or wi with equal probability, and these Yi are independent. Then, we have E
[
Y 2
i

]
= w2

i /2 and

E
[
YiYk

]
= wiwk/4 for any i ̸= k. Let Y = (Yi)i∈[n] be the concatenation of these randomized

potential outcomes and w = (wi)i∈[n] be the vector of cluster sizes. For any correlation matrix

Σ = (σik)i,k∈[n] ∈ ℜ, we have

max
y∈×i∈[n][0,wi]

yTΣy ≥ E
[
Y TΣY

]
=

1

2

∑
i∈[n]

w2
i +

1

4

∑
i∈[n]

∑
[n]∋k ̸=i

wiwkσik =
1

4

∑
i∈[n]

w2
i +

1

4
wTΣw ≥ 1

4

∑
i∈[n]

w2
i .

Thus, V LB ≥ 1
4

∑
i∈[n]w

2
i , which completes the proof of the lemma.

B.6 Proof of Lemma 4.3

We start by finding an upper bound on the worst-case variance within a group. First, it is clear that

the worst-case variance increases with the size wi of any cluster i in the group because increasing wi

enlarges the potential outcomes’ uncertainty set. Thus, for a group with at most k clusters where

the largest cluster size is equal to w, the worst-case variance is largest when there are exactly k

clusters and all cluster sizes are equal to w. By Proposition 3.1, the optimal partition is to have

all the k clusters in one block, and the corresponding worst-case variance is fq(k) · w2.

Next, let N =
⌈
n
k

⌉
be the number of groups. By the above analysis, we have

V k ≤ fq(k)Sk, (13)

where Sk =
∑N

i=1w
2
(i−1)k+1 is the sum of squares of the largest cluster sizes in each group. We

claim that

4V LB ≥
∑
i∈[n]

w2
i ≥ k · (Sk − w2

1) + w2
1. (14)
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The first inequality in (14) follows from Lemma 4.2. The second inequality in (14) holds, because

∑
i∈[n]

w2
i ≥ w2

1 +

(N−1)k+1∑
i=2

w2
i = w2

1 +
N−1∑
h=1

hk+1∑
i=(h−1)k+2

w2
i

(∗)
≥ w2

1 + k ·
N−1∑
h=1

w2
hk+1 = w2

1 + k · (Sk − w2
1),

where the above inequality (∗) follows from the fact that clusters (h − 1)k + 2 to hk have weakly

larger sizes than the cluster hk + 1. Now, by rearranging the terms in (14), we have

Sk ≤ 4V LB

k
+

k − 1

k
w2
1.

Combining this with (13) yields

V k

V LB
≤ fq(k) ·

Sk

V LB
≤ fq(k)

(
4

k
+

k − 1

k

w2
1

V LB

)
≤ fq(k)

(
4

k
+

k − 1

k

)
,

where the last inequality follows from w2
1 ≤ V LB by Lemma 4.2.

B.7 Proof of Lemma 4.7

It suffices to prove Lemma 4.7 only for k ≥ k0 ≜ 1
2q(1−q) ≥ 2, because when k ≤ k0, fq(k) can be

uniformly bounded from above by a constant. By Proposition 3.1, σ = −nq(1−q)−p(1−p)
n(n−1)q(1−q) < 0 with

p = ⌈qn⌉ − qn; hence, we have

fq(k) = max
h∈[k]

{h+ h(h− 1)σ} ≤ max
h∈R

{h+ h(h− 1)σ} =
k3q(1− q)

4(k − 1)
[
kq(1− q)− p(1− p)

] ,
where the second equality follows by taking h = − 1

2σ + 1
2 that maximizes the quadratic objective.

Since p(1− p) ≤ 1
4 = k0

2 · q(1− q), we have

4fq(k)− k ≤ k3

(k − 1)
(
k − k0

2

) − k =
k2
(
1 + k0

2

)
− k0

2 k

(k − 1)
(
k − k0

2

) ≤
(
1 +

k0
2

)
1

1− 1
k

1

1− k0
2k

.

By the fact that 1
1−x ≤ 1 + 2x for x ∈ [0, 12 ] and that k ≥ k0 ≥ 2, we have

4fq(k)− k ≤
(
1 +

k0
2

)(
1 +

2

k

)(
1 +

k0
k

)
≤ 2

(
1 +

k0
2

)(
1 +

2

k0

)
= 4 + 8q(1− q) +

1

2q(1− q)
,

which is bounded from above by a constant.
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B.8 Details and Proof of Correctness of Example 4.1

Throughout this section, we focus on the setting of Example 4.1. For notational convenience, we

index the blocks of an IBR experiment in decreasing order of size from the largest cluster in each

block. Also, for simplicity, we assume an even number n of clusters. We first show in Lemma B.1

that when a block contains four or more clusters, at least p ≥ 2 clusters take positive values (i.e.,

non-zero outcomes) in the worst-case potential outcome.

Lemma B.1. Suppose that a block contains an even number k ≥ 4 clusters, with cluster sizes

wi = βk−iwk for any i ∈ [k]. Then, at least p ≥ 2 clusters take positive values in the worst-case

potential outcome y = (yi)i∈[k].

Proof. Since the number of clusters k is even, the correlation between any two clusters is σ = − 1
k−1

by Corollary 3.2. By Lemma 3.3, p is the largest integer that satisfies

βk−pwk = wp ≥
2

k − 1
·
p−1∑
i=1

wi =
2

k − 1
·
p−1∑
i=1

βk−iwk =
2

k − 1

βp − β

β − 1
· βk−pwk.

This implies that p =
⌊
ln( k−1

2
(β−1)+β)
lnβ

⌋
≥ 2 when k ≥ 4.

We next show in Lemma B.2 that with the optimal partition, all blocks contain either two or

four clusters.

Lemma B.2. Suppose that the number of clusters n is even. All blocks in an optimal partition

contain either 2 or 4 clusters.

Proof. By Lemma C.3, each block contains an even number of clusters. Suppose that a block

instead contains k clusters where k is an even number satisfying k ≥ 6. Without loss of generality,

we assume that wi = βk−i for each cluster i ∈ [k] (since we can always normalize cluster sizes by

the size of the smallest cluster). We claim that we can further partition this block into two smaller

blocks to reduce the worst-case variance. Specifically, the first block contains the first k−2 clusters

of the original block, and the second block contains the other two blocks.

First, consider the worst-case variance associated with the two new blocks, denoted by Va. Let p

be the number of positive values in the worst-case potential outcome of the first block. By Lemma

B.1, p ≥ 2 because block one contains k − 2 ≥ 4 clusters. We have

Va =

∑
i∈[p]

w2
i −

∑
i∈[p]

∑
[p]∋j ̸=i

1

k − 3
wiwj

+ β2.
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Here β2 is simply the worst-case variance of the second block, because in the worst case, cluster

k − 1 has a positive outcome and cluster k has outcome zero (this follows from Lemma C.2).

Let Vb denote the worst-case variance of the original block. It satisfies

Vb ≥
∑
i∈[p]

w2
i −

∑
i∈[p]

∑
[p]∋j ̸=i

1

k − 1
wiwj ,

because the correlation between any two clusters in the original block is − 1
k−1 , and p is not nec-

essarily the number of positive values in the worst-case potential outcome of the original block.

Thus,

Vb − Va ≥
∑
i∈[p]

∑
[p]∋j ̸=i

(
1

k − 3
− 1

k − 1

)
wiwj − β2

≥ 2

(
1

k − 3
− 1

k − 1

)
w1w2 − β2

=
4β2k−3

(k − 1)(k − 3)
− β2,

which is nonnegative when k ≥ 6. Hence, splitting the large block into two smaller blocks reduces

the worst-case variance.

Finally, we show in Lemma B.3 that all blocks contain four clusters in the optimal partition.

Lemma B.3. Suppose that the number of clusters n is even. Then the optimal partition of an IBR

experiment satisfies the following:

� If n is divisible by 4, all blocks contain exactly 4 clusters;

� Otherwise, the last block contains 2 clusters, and all the other blocks contain exactly 4 clusters.

Proof. By Lemma B.2, each block contains either two or four clusters. For a two-cluster block,

the worst-case outcome is simply the large cluster having a positive outcome and the small cluster

having the zero outcome. For a four-cluster block, by the proof of Lemma B.1, the worst-case

potential outcome is only the two largest clusters taking positive outcomes.

Let K be the number of blocks. It suffices to show that all of the first K − 1 blocks contain

four clusters. Suppose by way of a contradiction that block h ≤ K − 1 contains two clusters, k and

k+1. If block h+1 contains two clusters (k+2, k+3) as well, then the above observations imply
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that merging blocks h and h+ 1 decreases the worst-case variance by

w2
k+3 ·

{(
β6 + β2

)
−
(
β6 + β4 − 2

3
· β5

)}
> 0.

Now suppose that block h+1 contains four clusters. Suppose that we reconstruct blocks h and

h+1 by assigning clusters k to k+3 to block h and clusters k+4 and k+5 to block h+1. Then,

the worst-case variance decreases by

w2
k+5 ·

{(
β10 + β6 + β4 − 2

3
· β5

)
−
(
β10 + β8 − 2

3
· β9 + β2

)}
> 0.

Thus, it follows that it is not optimal for any block h ≤ K − 1 to contain two clusters.

We now show that the optimal IBR experiment is asymptotically suboptimal. Consider a block

with four clusters with sizes wi = β4−i for i ∈ [4]. The worst-case variance from randomly assigning

half of the clusters to treatment is vhalf = β6 + β4 − 2
3 · β5 = 4.222. The worst-case variance from

the optimal randomized joint assignment (given in Table 3) is vOPT = 3.815. Now, let us revisit

Example 4.1. For simplicity, we assume that the number of clusters n is divisible by four. Since

every block in the optimal partition contains 4 clusters by Lemma B.3 and the blocks are identical

up to a scaling, the worst-case variance from the optimal IBR experiment is

V DP =

n/4∑
i=1

w2
4i−3 · vhalf .

For an experiment that assigns clusters in a block to treatment in an optimal way, and does so

independently across blocks, the worst-case variance, denoted by V , is

V =

n/4∑
i=1

w2
4i−3 · vOPT.

Thus,
V DP − V OPT

V OPT
≥ V DP − V

V
=

vhalf − vOPT

vOPT
= 10.7%,

which implies that the optimal IBR experiment is asymptotically strictly suboptimal.
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1 2 3 4 probability

1
√

×
√

× 0.1700
2 ×

√
×

√
0.1700

3
√ √

× × 0.1500
4 × ×

√ √
0.1500

5
√

× ×
√

0.0954
6 ×

√ √
× 0.0954

7
√

× × × 0.0846
8 ×

√ √ √
0.0846

Table 3: The optimal randomized joint assignment of treatment to four clusters, with cluster sizes wi = β4−i

for i ≤ 4 and β = 5
4 . Each of the 8 rows corresponds to an assignment, where

√
denotes treatment and ×

denotes control.

B.9 Proof of Theorem 4.9

Throughout the proof, we refer to a cluster of size wk as a cluster of type k. First, using a similar

argument to the one in the proof of Proposition 3.1, we have that any convex combination of

optimal correlation matrices in (5) (which is the optimization problem that defines V LB) is an

optimal correlation matrix as well. Thus, there exists an optimal correlation matrix attaining V LB

that takes the following form:

Σ =


σ1111

T + (1− σ11)I σ1211
T · · · σ1K11T

σ1211
T σ2211

T + (1− σ22)I σ2K11T

...
. . .

...

σ1K11T σ2K11T · · · σKK11T + (1− σKK)I

 , (15)

where σkk is the correlation coefficient of the treatment assignments for any two different clusters

of the same type k, and σkℓ is the correlation coefficient of the treatment assignments for any two

clusters of types k and ℓ with k ̸= ℓ, respectively. Since the correlation matrix Σ needs to be
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positive semidefinite, for any scalars xk ∈ R for k ∈ [K], we have

0 ≤
(
x11

T x21
T · · · xK1T

)
Σ


x11

x21
...

xK1


=

K∑
k=1

[
σkkx

2
kn

2
k + (1− σkk)x

2
knk

]
+

K∑
k=1

∑
ℓ̸=k

σkℓxkxℓnknℓ

=
(
x1n1 x2n2 · · · xKnK

)


1+(n1−1)σ11

n1
σ12 · · · σ1K

σ12
1+(n2−1)σ22

n2
σ2K

...
. . .

...

σ1K σ2K · · · 1+(nK−1)σKK

nK




x1n1

x2n2

...

xKnK

 .

Thus, the matrix

Σ̃ =



1+(n1−1)σ11

n1
σ12 · · · σ1K

σ12
1+(n2−1)σ22

n2
σ2K

...
. . .

...

σ1K σ2K · · · 1+(nK−1)σKK

nK

 ⪰ 0 (16)

needs to be positive semidefinite.

For the IBR experiment with one block for each set of clusters of the same type, the corre-

sponding correlation matrix takes the form of (15) as well, with σkk as given in Proposition 3.1 and

σkℓ = 0 for all k ̸= ℓ. For each block k, let h̄k denote the number of clusters in the block that take

values wk in the worst-case potential outcome of the IBR experiment (the other k-type clusters

take value 0). Now, let Σ∗ denote an optimal correlation matrix attaining V LB that takes the form

of (15) and let (σ∗
kℓ)k,ℓ∈[K] denote the corresponding correlation coefficients between cluster types.

We have

V LB = max
hk∈[0:nk]

∑
k∈[K]

w2
k

[
hk + hk(hk − 1)σ∗

kk

]
+
∑
k∈[K]

∑
ℓ ̸=k

wkwℓhkhℓσ
∗
kℓ


≥
∑
k∈[K]

w2
k

[
h̄k + h̄k(h̄k − 1)σ∗

kk

]
+
∑
k∈[K]

∑
ℓ̸=k

wkwℓh̄kh̄ℓσ
∗
kℓ,

where we plug in the worst-case potential outcome of the IBR experiment to obtain the inequality.
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As a result,

V − V LB ≤
∑
k∈[K]

w2
kh̄k

(
h̄k − 1

) (
σkk − σ∗

kk

)
−
∑
k∈[K]

∑
ℓ̸=k

wkwℓh̄kh̄ℓσ
∗
kℓ

=
∑
k∈[K]

w2
k

(
h̄k
(
h̄k − 1

) (
σkk − σ∗

kk

)
+

1 + (nk − 1)σ∗
kk

nk
h̄2k

)

−

∑
k∈[K]

1 + (nk − 1)σ∗
kk

nk
w2
kh̄

2
k +

∑
k∈[K]

∑
ℓ̸=k

wkwℓh̄kh̄ℓσ
∗
kℓ


≤
∑
k∈[K]

w2
k

(
h̄k
(
h̄k − 1

) (
σkk − σ∗

kk

)
+

1 + (nk − 1)σ∗
kk

nk
h̄2k

)

=
∑
k∈[K]

w2
k


(
h̄k −

h̄2k
nk

)
σ∗
kk +

h̄2k

(
1

nk
+ σkk

)
− h̄kσkk︸ ︷︷ ︸

(a)




≤
∑
k∈[K]

w2
k

(
1

4
nkσ

∗
kk +

1

2q(1− q)
+ 1

)
,

(17)

where the second inequality follows from the fact that with u =
(
wkh̄k

)
k∈[K]

∈ RK ,

∑
k∈[K]

1 + (nk − 1)σ∗
kk

nk
w2
kh̄

2
k +

∑
k∈[K]

∑
ℓ̸=k

wkwℓh̄kh̄ℓσ
∗
kℓ = uTΣ̃u ≥ 0,

because Σ̃ is positive semidefinite by (16), and the last inequality follows from the fact that h̄k−
h̄2
k

nk
≤

nk
4 (the equality is attained when h̄k = nk

2 ) and that (a) ≤ 1
2q(1−q) + 1 by Lemma B.4. To bound

the value of nkσ
∗
kk from above, note that by Lemma 4.2,

V LB ≤
∑
k∈[K]

nkw
2
k ≤ nw2

1. (18)

Also, note that

V LB = max
hk∈[0:nk]

∑
k∈[K]

w2
k

[
hk + hk(hk − 1)σ∗

kk

]
+
∑
k∈[K]

∑
ℓ ̸=k

wkwℓhkhℓσ
∗
kℓ


≥ w2

k

[
nk + nk(nk − 1)σ∗

kk

]
≥ w2

kn
2
kσ

∗
kk,

(19)

where we take hk = nk and hℓ = 0 for all ℓ ̸= k to obtain the first inequality. Combining the
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inequalities (18) and (19) gives

nkσ
∗
kk ≤ min

{
nk,

w2
1n

w2
knk

}
.

Plugging this last inequality into the right-hand side of the chain of inequalities in (17) yields the

desired bound, and hence completes the proof.

Lemma B.4. (a) ≤ 1
2q(1−q) + 1.

Proof. First, if nk = 1, we have h̄k = 1 and hence (a) = 1 ≤ 1
2q(1−q) +1. In what follows, we assume

that nk ≥ 2.

Note that σkk = −nkq(1−q)−p(1−p)
nk(nk−1)q(1−q) ∈ [− 1

nk−1 , 0) with p = ⌈qnk⌉ − qnk by Proposition 3.1. If

p(1−p) ≤ q(1−q), then we have σ ≤ − 1
nk

and, as a result, (a) ≤ −h̄kσkk ≤ nk
nk−1 ≤ 2 ≤ 1

2q(1−q) +1.

Otherwise, if p(1 − p) ≥ q(1 − q), then we have σkk ≥ − 1
nk

and σkk + 1
nk

= p(1−p)−q(1−q)
nk(nk−1)q(1−q) ≤

1
4nk(nk−1)q(1−q) . As a result,

(a) ≤ n2
k ·

1

4nk(nk − 1)q(1− q)
+ nk ·

1

nk
=

nk

nk − 1

1

4q(1− q)
+ 1 ≤ 1

2q(1− q)
+ 1.

B.10 Proof of Theorem 4.10

First, note that we have

K ≤
⌈
lnw1/w̄

lnα

⌉
≤ lnw1/w̄

lnα
+ 1 ≤ (1 + δ1) lnn

2 ln(1 + n−δ2)
+ 1 = O

(
nδ2 · lnn

)
.

Let Sk ⊆ [n] denote the set of clusters in block k and let nk = |Sk| denote this block’s cardinality.

Consider a new problem instance in which we first drop block zero, and then for each block k ∈ [K]

we decrease all of the cluster sizes to the smallest cluster size in the block. We denote the smallest

cluster size in the block k by wk ≜ mini∈Sk
wi. For this new problem instance, let Ṽ LB denote the

lower bound on the worst-case variance of an optimal experiment (i.e., the optimal value of (5))

and let Ṽ denote the worst-case variance of the IBR experiment. We proceed by bounding the

differences of the original and the new problem instances in terms of the worst-case variances of

their IBR experiments and the corresponding lower bounds.

Lemma B.5. Ṽ LB ≤ V LB and 0 ≤ V − Ṽ ≤ n−δ1
∑n

i=1w
2
i + (α2 − 1)

∑n
i=1w

2
i .

Proof. Since cluster sizes are weakly smaller in the new problem instance, the set of the potential

outcomes is more restricted, and hence Ṽ LB ≤ V LB and Ṽ ≤ V . For an IBR experiment, the

worst-case variance is the sum of the worst-case variances of each block. Let Vk and Ṽk denote the
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worst-case variances of block k in the original and the new problem instances, respectively. We

have

V − Ṽ = V0 +
∑
k∈[K]

(
Vk − Ṽk

)
≤
∑
i∈S0

w2
i +

∑
k∈[K]

(
α2Ṽk − Ṽk

)

≤ n−δ1

n∑
i=1

w2
i + (α2 − 1)Ṽ

≤ n−δ1

n∑
i=1

w2
i + (α2 − 1)

n∑
i=1

w2
i .

(20)

Here, the first inequality uses the fact that for the specific logarithmic partition, we have wi ≤ αwk

for any cluster i ∈ Sk. This implies that the worst-case variance Vk is no larger than the worst-case

variance when all cluster sizes in block k are equal to αwk. The latter quantity is α2Ṽk, and hence

Vk ≤ α2Ṽk. The first and third inequalities also make use of the inequalities V0 ≤
∑

i∈S0
w2
i and

Ṽ ≤ V ≤
∑n

i=1w
2
i , respectively, by Lemma 4.2. These hold because an IBR experiment always

has a smaller worst-case variance than the naive experiment that assigns treatment to each cluster

independently. Finally, the second inequality follows from the fact that wi ≤ w̄ for all clusters

i ∈ S0 and that n0 = |S0| ≤ n.

We next analyze the new problem instance, and bound the gap Ṽ − Ṽ LB. In the new problem

instance, clusters in a block are of equal size. Therefore, we can adopt the analysis for Theorem 4.9.

Specifically, by (17) we have

Ṽ − Ṽ LB ≤ 1

4

∑
k∈[K]

w2
k ·
(
nkσ

∗
kk + C(q)

)
,

where C(q) ≜ 2
q(1−q) + 4 is a constant and σ∗

kk is the optimal correlation coefficient of any two

clusters in block k obtained from the solution of (5) (that takes the form (15)) for the new problem

instance. By (19),

w2
knkσ

∗
kk ≤ min

{
w2

knk,
Ṽ LB

nk

}
≤ wk

√
Ṽ LB ≤ wk

√
V LB.
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Thus, we have

Ṽ − Ṽ LB ≤ 1

4

∑
k∈[K]

{
wk

√
V LB + C(q) · w2

k

}
≤ K

4
·
(
w1

√
V LB + C(q) · w2

1

)
≤ C(q) + 1

4
K · w1

√
V LB,

(21)

where the last inequality follows from w2
1 ≤ V LB by Lemma 4.2.

Combining (20) and (21), we have

V − V LB

V LB
≤ V − Ṽ + Ṽ − Ṽ LB

V LB

≤
4n−δ1

∑n
i=1w

2
i + 4(α2 − 1)

∑n
i=1w

2
i + (C(q) + 1)K · w1

√
V LB

4V LB

≤
4n−δ1

∑n
i=1w

2
i + 4(α2 − 1)

∑n
i=1w

2
i + (C(q) + 1)K · w1

√∑n
i=1w

2
i∑n

i=1w
2
i

= 4n−δ1 + 4(α2 − 1) + (C(q) + 1)K ·

√
w2
1∑n

i=1w
2
i

= O
(
n−δ1

)
+O

(
n−δ2

)
+O

(
n− c

2
+δ2 · lnn

)
,

where the third inequality follows from the lower and upper bounds of V LB in Lemma 4.2. Taking

δ1 = δ2 =
c
4 results in

V − V LB

V LB
= O

(
n− c

4 lnn
)
,

which completes the proof of the theorem.

C Structural Properties of IBR Experiments

We first show in Lemma C.1 that the correlation of any two clusters in a block is nondecreasing as

the size of the block increases.

Lemma C.1. Suppose that there are n clusters, and consider the experiment that selects a fraction q

of the clusters uniformly at random and assigns them to treatment, as described in Proposition 3.1.

The correlation coefficient σ of any two assignments is nondecreasing in the number of clusters n.

Proof. Let σn denote the correlation coefficient of any two clusters when there are n clusters; by

Proposition 3.1, we have σn = −nq(1−q)−pn(1−pn)
n(n−1)q(1−q) , with pn ≜ ⌈qn⌉ − qn.
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To show that σn+1 ≥ σn, it is equivalent to show

(∗) ≜ (n+ 1)q(1− q) + (n− 1)pn+1(1− pn+1)− (n+ 1)pn(1− pn) ≥ 0.

In what follows, we check the four possible cases regarding the values of qn and q(n+1) relative to

⌊qn⌋ and ⌈qn⌉ (as illustrated in Figure 4), and we validate the nonnegativity of (∗) for each case.

Case One: qn ∈ N. In this case, qn = ⌊qn⌋ = ⌈qn⌉ and hence, pn = 0. Thus, (∗) > 0 and hence

σn+1 > σn.

Case Two: ⌊qn⌋ < qn < q(n + 1) < ⌈qn⌉. In this case, (∗) = 2⌊qn⌋
(
⌈qn⌉ − q(n + 1)

)
≥ 0 and

hence σn+1 ≥ σn. Specifically, if furthermore qn < 1, (∗) = 0 and hence σn+1 = σn; otherwise,

σn+1 > σn.

Case Three: ⌊qn⌋ < qn < q(n + 1) = ⌈qn⌉. In this case, pn+1 = 0 and pn = q. Hence, (∗) = 0

and σn+1 = σn.

Case Four: ⌊qn⌋ < qn < ⌈qn⌉ < q(n+ 1). In this case, (∗) = 2
(
n− ⌈qn⌉

)(
(n+ 1)q − ⌈qn⌉

)
> 0;

hence, σn+1 > σn.

qn = ⌊qn⌋ = ⌈qn⌉ q(n+ 1)

(a) Case One

⌊qn⌋ ⌈qn⌉

qn q(n+ 1)

(b) Case Two

⌊qn⌋ ⌈qn⌉

qn q(n+ 1)

(c) Case Three

⌊qn⌋ ⌈qn⌉ = ⌊q(n+ 1)⌋ ⌈q(n+ 1)⌉

qn q(n+ 1)

(d) Case Four

Figure 4: Illustration of the four cases.

In the rest of the section, we assume that the marginal assignment probability q is equal to 1
2 , and

we shed light on two structural properties of the IBR experiments. Our first property establishes
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that under an IBR experiment, at most half of the clusters in a block can take a positive value in

the worst-case potential outcome.

Lemma C.2. Suppose that the marginal assignment probability q is equal to 1
2 . Consider a block

with k clusters, and let r be the number of clusters that take a positive value in the worst-case

potential outcome. Then, r ≤ k
2 if k is even, and r ≤ k+1

2 if k is odd.

Proof. To see this, note that when the correlation σ is negative, Lemma 3.3 implies that

wr ≥ −2σ
∑

i≤r−1

wi ≥ −2(r − 1)σ · wr,

which in turn implies that r ≤ − 1
2σ + 1. When the block contains an even number k of clusters,

σ = − 1
k−1 by Corollary 3.2. Thus, r is an integer no larger than k

2 . Analogously, when the number

of clusters k is odd, σ = − 1
k , and hence, r is an integer no larger than k+1

2 .

For the next result, we index the blocks of an IBR experiment in decreasing order of size from

the largest cluster in the block (and we break ties using the size of the smallest cluster in the block).

We show in Lemma C.3 that in the optimal partition obtained from solving the DP, all but the last

block contain an even number of clusters.

Lemma C.3. Suppose that the marginal assignment probability q is equal to 1
2 . There exists an

optimal cluster partition obtained from solving the DP such that (i) if the number of clusters n is

even, then all blocks contain an even number of clusters, and (ii) if n is odd, then all but the last

block contain an even number of clusters.

Proof. We first focus on a single block with k clusters and cluster sizes w1 ≥ w2 ≥ · · · ≥ wk. We

highlight three observations. First, clearly, if the vector of cluster sizes entry-wise decreases, the

worst-case variance of this block will weakly decrease. Second, if we drop any of the clusters from

the block, the worst-case variance of the block will weakly decrease as well because assignments

to the remaining clusters become more negatively correlated. Third, if the number of clusters k is

odd, adding a cluster of size w′ ≤ wk does not change the worst-case variance of this block. To see

this, note that after the addition, the correlation between the assignments to any two clusters in

the block does not change (and remains − 1
k by Corollary 3.2). Moreover, the worst-case potential

outcome does not change either, due to Lemma 3.3 and Lemma C.2.

We now turn to the optimal partition by solving the DP. Let K denote the number of blocks,

and Sk =
{
wk
1 ≥ wk

2 ≥ · · · ≥ wk
nk

}
denote the set of clusters (sorted in decreasing order of size)
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in block k ∈ [K]. If a block h ≤ K − 1 has an odd number of clusters, consider a new partition

{S′
k}k∈[K] as follows: S

′
k = Sk for any k ≤ h− 1, S′

h = Sh ∪
{
wh+1
1

}
, S′

k = Sk \
{
wk
1

}
∪
{
wk+1
1

}
for

any h+1 ≤ k ≤ K−1, and S′
K = SK \

{
wK
1

}
. By the former discussion, the worst-case variance of

each block weakly decreases. Thus, {S′
k}k∈[K] is a weakly better partition than {Sk}k∈[K]. Iterating

this last step completes the proof.

D More on the Airbnb Example in Section 5.2

In this section, we elaborate more on the Airbnb example in Section 5.2.

D.1 Visualization and More Information about the Partition

We visualize the geographic locations of the listings in Figure 5. Figure 6 exhibits the ten largest

clusters from the Louvain algorithm, and Table 4 provides more details of the ten clusters. The

ten clusters cover 97% of the entire listings.

Seventy-seven percent of the ten clusters’ listings connect only to listings in the same cluster.

For the remaining listings, Figure 7 presents a histogram of the fraction of neighbors that are in a

different cluster. From Figure 7, it can be seen that most of the listings have the majority of their

connections in the same cluster.

cluster color description size

1 orange entire home/apts in San Francisco (excluding the northwestern area) 2566

2 cyan entire home/apts to the south of South San Francisco and north of San Jose 2100

3 green private rooms in San Francisco 2093

4 purple entire home/apts in San Jose 1908

5 magenta private rooms in San Jose 1629

6 gold entire home/apts in the northwestern area of San Francisco 1535

7 pink entire home/apts in Oakland 1390

8 red private rooms to the south of San Francisco and north of San Jose 1181

9 brown private rooms in Oakland 590

10 blue entire home/apts in Daly City and South San Francisco 518

Table 4: Description of the ten clusters visualized in Figure 6. The size of a cluster is the number of listings
in the cluster, and the color of a cluster corresponds to its color in Figure 6.
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Figure 5: The geographical distributions of Airbnb listings in the Bay area. Red nodes represent listings
whose room types are “entire home/apartment” (62.7%), green nodes represent listings whose room types
are “private room” (34.5%), and blue nodes represent listings whose room types are either “shared room”
or “hotel room” (altogether 2.8%).

D.2 The Optimal Cluster-Based Experiment

An optimal cluster-based experiment for this example is provided in Table 5. The induced corre-

lation structure was reported in Section 5.2. The worst-case value of wi under the experiment is

yOPT = [0, 2100, 2093, 0, 1629, 1535, 1390, 0, 0, 0]T.

Note that when the marginal assignment probability q equals 1
2 , there always exists an optimal

experiment that is symmetric across treatment and control assignments; i.e., letting P (S) denote

the probability that clusters in set S ⊆ [n] receive the treatment whereas clusters not in set S receive
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Figure 6: The partition of listings into n = 10 clusters, with each color representing a different cluster.

the control, we obtain that P (S) = P (Sc) for any subset S ⊆ [n] of clusters.15 Such an optimal

symmetric experiment still has a complex randomized assignment. Specifically, it randomizes over

88 different possible assignment vectors (where the number of treated clusters varies between 4 and

6), and chooses different probabilities for these vectors without following any clear patterns.

15To see this, note that given an optimal experiment, we can always construct another optimal experiment by
flipping the treatment and control assignments by Remark 2.1. Then, since the optimal experimental design problem
can be formulated as a linear program as in (6), randomizing over the two optimal experiments with equal probability
is still optimal, and is symmetric across the treatment and control assignments.
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1 2 3 4 5 6 7 8 9 10 probability
1

√ √
× ×

√ √
× × × × 0.0565

2
√

×
√ √

× ×
√

× × × 0.0499
3

√ √ √
× × × × ×

√ √
0.0434

4 × ×
√ √ √ √

× × ×
√

0.0417
5 ×

√ √
× ×

√ √ √
× × 0.0386

6
√

×
√

×
√

× ×
√

×
√

0.0351
7 ×

√ √
×

√
× ×

√ √
× 0.0349

8
√

× × ×
√

×
√ √ √

× 0.0349
9

√
× ×

√
×

√
×

√ √
× 0.0337

10 × ×
√ √

×
√

×
√ √ √

0.0323
11 ×

√ √ √
× × ×

√
× × 0.0322

12 ×
√ √

× ×
√ √

×
√

× 0.0309
13

√
× × × ×

√ √ √ √ √
0.0296

14 × ×
√

×
√ √ √

×
√ √

0.0296
15 ×

√
×

√
×

√ √
× ×

√
0.0286

16
√

×
√

×
√

×
√

× ×
√

0.0270
17 ×

√
×

√ √
×

√
×

√ √
0.0266

18
√

× × × ×
√ √ √

×
√

0.0256
10

√ √
×

√
× × ×

√
×

√
0.0245

20 × ×
√ √ √ √

× ×
√

× 0.0239
21

√ √
×

√
× × × ×

√ √
0.0232

22 ×
√ √

× × ×
√ √

×
√

0.0182
23

√
×

√ √
× × × ×

√
× 0.0181

24
√

× ×
√ √

×
√

× × × 0.0172
25 ×

√
×

√
× ×

√ √ √ √
0.0167

26 × × ×
√ √ √

×
√ √ √

0.0155
27

√ √
× ×

√ √
× ×

√
× 0.0155

28 × × ×
√ √ √ √ √

×
√

0.0151
29 ×

√
×

√ √
×

√
×

√
× 0.0148

30 ×
√

×
√ √

×
√ √

× × 0.0140
31

√
× ×

√
×

√ √
×

√
× 0.0139

32 ×
√

× ×
√

×
√ √ √ √

0.0127
33

√
×

√
× ×

√
×

√
× × 0.0126

34 ×
√

× ×
√ √

×
√

×
√

0.0114
35

√ √
× × ×

√
× ×

√ √
0.0097

36 × ×
√

×
√

×
√ √ √

× 0.0097
37

√
× ×

√ √
× ×

√ √
× 0.0096

38 ×
√

×
√ √ √

×
√

× × 0.0085
39 ×

√
×

√ √
× ×

√
×

√
0.0080

40 × × ×
√ √ √ √ √

× × 0.0079
41 ×

√
×

√ √
×

√ √ √
× 0.0076

42
√ √

× × ×
√ √

× ×
√

0.0064
43 ×

√ √
× ×

√ √
×

√ √
0.0061

44 × ×
√ √ √

×
√

× × × 0.0060
45 × ×

√ √ √
×

√
×

√ √
0.0055

46
√

× × ×
√

×
√ √

×
√

0.0041
47

√ √
×

√
×

√
× × × × 0.0035

48
√ √

× ×
√

× ×
√

×
√

0.0033
49 ×

√ √
×

√ √
×

√
× × 0.0028

50
√ √

×
√

× ×
√

× × × 0.0014
51

√
×

√
× × ×

√ √ √
× 0.0008

52
√

×
√

×
√

×
√

×
√

× 0.0005
53

√
×

√
× ×

√
× ×

√
× 0.0001

Table 5: The randomized joint assignment of the optimal cluster-based experiment. Each of the 53 rows
corresponds to a possible assignment, where

√
denotes treatment and × denotes control.
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Figure 7: Histogram of the fraction of connections that are in a different cluster, among those listings that
ever have a connection to a different cluster (which amount to 23% of the entire listings in the ten clusters).

D.3 The Optimal IBR Experiment and Other Heuristics

The correlation matrix of the optimal IBR experiment (computed by solving a DP) is

ΣDP =



1 − 1
3 − 1

3 − 1
3 0 0 0 0 0 0

− 1
3 1 − 1

3 − 1
3 0 0 0 0 0 0

− 1
3 − 1

3 1 − 1
3 0 0 0 0 0 0

− 1
3 − 1

3 − 1
3 1 0 0 0 0 0 0

0 0 0 0 1 − 1
3 − 1

3 − 1
3 0 0

0 0 0 0 − 1
3 1 − 1

3 − 1
3 0 0

0 0 0 0 − 1
3 − 1

3 1 − 1
3 0 0

0 0 0 0 − 1
3 − 1

3 − 1
3 1 0 0

0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 −1 1



.

The worst-case value of wi for this experiment is yDP = [2566, 2100, 0, 0, 1629, 1535, 0, 0, 590, 0]T.

The correlation matrix of the HALF experiment is

Σhalf =
10

9
I − 1

9
11T;

i.e., all the diagonal entries are one and all the off-diagonal entries are −1
9 . The worst-case value

of wi for this experiment is yhalf = [2566, 2100, 2093, 1908, 0, 0, 0, 0, 0, 0]T.
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The correlation matrix of the PAIR experiment is

Σpair =



1 −1 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 0 −1 1 0 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 −1 1



.

The worst-case value of wi for this experiment is ypair = [2566, 0, 2093, 0, 1629, 0, 1390, 0, 590, 0]T.

Finally, the correlation matrix of the IND experiment is the identity matrix Σind = I. The worst-

case value of wi for this experiment is yind = [2566, 2100, 2093, 1908, 1629, 1535, 1390, 1181, 590, 518]T.

E Numerical Example: Facebook Subnetworks of US Universities

In this section, we consider a numerical example based on Facebook subnetworks of one hundred

US universities. Specifically, we leverage the data described in Section 2 of Traud et al. (2012),

which can be accessed from Rossi and Ahmed (2015). We consider cluster-based experiments over

these subnetworks, with the users from each university constituting one cluster. We assume that

users from different universities are only loosely connected (in contrast with the dense connection

structure within each subnetwork), and that the interference among these subnetworks is negligible.

Analogous to Section 5.2, we again focus on the case where the marginal assignment probability

q is set to be 1
2 , and we assume that the upper bounds wi1 and wi0 of the cluster-level treatment

and control potential outcomes are both proportional to the size (i.e., number of users) of cluster

i; please refer to Traud et al. (2012) for the sizes of these one hundred clusters.

With n = 100 clusters, it is computationally prohibitive to obtain the optimal cluster-based

experiment. The optimal IBR experiment, on the other hand, is fairly easy to compute by solving

the DP in Section 3.2. Specifically, the optimal IBR experiment partitions the clusters into 11

blocks, with the number of clusters in each block being16

8, 10, 10, 12, 10, 12, 12, 10, 8, 4, 4.

16Blocks are sorted in decreasing order of size from the largest cluster in each block.
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We again consider the three natural experiments in Section 5.2 for comparison. The HALF experi-

ment increases the worst-case variance by V half−V DP

V DP = 78.3% relative to our IBR experiment. The

PAIR experiment increases the worst-case variance by V pair−V DP

V DP = 62.9%. The IND experiment

increases the worst-case variance by V ind−V DP

V DP = 210.0%. Thus, the IBR experiment again reduces

the worst-case variance considerably when compared to other commonly used heuristic experiments.

E.1 Average-Case Analysis of the Facebook Example

In this section, we conduct an average-case analysis of the Facebook subnetwork example by com-

paring different experiments’ variances under the same potential outcomes (in contrast to their

respective worst-case outcomes as considered earlier) with the potential outcomes drawn randomly

from a given distribution. We focus on the case where the marginal assignment probability q equals

1
2 , and we compare the optimal IBR experiment and the HALF, PAIR, and IND experiments as de-

scribed in Section 5.2. With some abuse of notation, we let V DP, V half , V pair, and V ind denote the

variances of the Horvitz–Thompson estimator for the optimal IBR experiment, the HALF experi-

ment, the PAIR experiment, and the IND experiment, respectively; these are random variables that

depend on the value of the potential outcomes.

We consider the following three cases for the underlying distribution of the cluster-level treat-

ment and control potential outcomes yi1 and yi0:

Case 1: Sample yi1, yi0 ∼ Unif[0, wi] for each cluster i, all i.i.d.,

Case 2: Sample yi0 ∼ Unif
[
0, wi

2

]
, i.i.d., and let yi1 = yi0 + 0.2wi for each cluster i,

Case 3: Sample yi0 ∼ Unif
[
0, wi

2

]
, i.i.d., and let yi1 = yi0 + 0.4wi for each cluster i,

where wi is the number of users in cluster i. In all three cases, the sampling distribution is

independent across clusters; we do so to avoid assuming a specific stylized correlation structure

across clusters.

Now, let τa ≜ τ
m denote the average treatment effect, where τ is the total market effect and

m =
∑

i∈[n]wi is the total number of users. Note that τa is approximately zero in Case 1, τa = 0.2

in Case 2, and τa = 0.4 in Case 3. We further let σDP ≜
√
V DP

m denote the standard deviation of the

Horvitz–Thompson estimator for τa under the optimal IBR experiment. Analogously, we let σhalf ≜
√
V half

m , σpair ≜
√
V pair

m , and σind ≜
√
V ind

m denote the standard deviations of the Horvitz–Thompson

estimator for τa under the HALF, PAIR, and IND experiments, respectively. In the simulation, we

randomly draw the potential outcomes 104 times for each case and we present the box plots of the

values σDP, σhalf , σpair, and σind and the ratios σhalf/σDP and σpair/σDP in Figure 8.
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As can be seen from Figure 8, the optimal IBR experiment reduces the variance substantially

compared to the HALF and IND experiments in all of the cases and under all realizations of the

potential outcomes. The PAIR experiment has a marginally smaller variance on average under the

three sampling distributions17 (see the right column of Figure 8). On the other hand, the optimal

IBR experiment attains a smaller worst-case variance, its variance is more concentrated around the

median, and hence it is more robust to the unknown potential outcomes. We also highlight that the

observation that the PAIR experiment has a smaller variance (on average) than our IBR experiment

is substantially an artifact of the choice of the sampling distribution. In particular, the assumption

that the potential outcomes are independent across clusters is indeed the source of this observation.

When, for example, the potential outcomes are negatively correlated between clusters of similar

size, the variance of the PAIR experiment is in general larger than the variance of the optimal IBR

experiment.18 From all three cases in this example, it can be seen that although the optimal IBR

experiment is designed with the goal of minimizing the worst-case variance, it maintains the same

performance or even reduces the variance on average in comparison to other heuristic experiments.

Finally, we present the box plot of the ratio σDP/τa, which is the standard deviation of the

Horvitz–Thompson estimator of the average treatment effect over the true value, for Cases 2 and

3 in Figure 9. In Figure 9, the standard deviation is relatively small compared to the true average

treatment effect, and this demonstrates the statistical power of the estimator. We elaborate more

on this point in Appendix F.

F Statistical Inference from IBR Experiments

In this section, we discuss a way to construct the confidence interval for estimating the total

market effect with an IBR experiment. The Horvitz–Thompson estimator τ̂ is unbiased. Now fix

the potential outcomes for treatment and control. When the number of blocks is large, by the

central limit theorem and the fact that assignments are independent across blocks, the distribution

of the estimator τ̂ is approximately normal. When the number of blocks is small, we assume that

τ̂ is approximately normal as well. Hence, an α-level confidence interval for the total market effect

can be given by
[
τ̂ − zα/2

√
Var[τ̂ ], τ̂ + zα/2

√
Var[τ̂ ]

]
, where zα/2 = Φ−1

(
1− α

2

)
, with Φ(·) being

the CDF of a standard normal distribution.

The problem, however, is that we are not able to compute the variance Var[τ̂ ], as it depends

17Specifically, the median of the ratio σpair/σDP is 0.98 in Cases 1 and 2 and 0.97 in Case 3.
18This can happen when the potential outcomes are correlated through (possibly unobserved) covariates and these

covariates are quite different across clusters of similar size.
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on all the values of potential outcomes, which cannot be observed simultaneously (recall that by

Lemma 2.1, Var[τ̂ ] = q(1 − q)yTΣy with yi = yi1
q + yi0

1−q for each cluster i ∈ [n]). We may use

the worst-case variance of the IBR experiment as a proxy for Var[τ̂ ], but this can be quite loose

especially when some of the potential outcomes are observed after the experiment.

Analogously to Section 4.3 of Imai et al. (2009) and Section 4.2 of Bojinov et al. (2020), we con-

sider a conservative estimator for the variance Var[τ̂ ] (which is a variant of a Neymanian conserva-

tive variance estimator; see Imbens and Rubin 2015 and Aronow and Middleton 2013). Specifically,

for each cluster i ∈ [n], we let yobsi ≜
√
1−q
q yi1 · 1 [Zi = 1] +

√
q

1−qyi0 · 1 [Zi = 0] denote the weighted

observed outcome for cluster i. We use the following estimator σ̂2 for the variance Var[τ̂ ], with

σ̂2 ≜ 2
∑
i∈[n]

(
yobsi

)2
+
∑
i∈[n]

∑
[n]∋k ̸=i

σik

((
yobsi

)2
+
(
yobsk

)2)
,

where σik is the correlation between clusters i and k. The mean of σ̂2 provides an upper bound on

the variance Var[τ̂ ] because

E
[
σ̂2
]
= q(1− q)

2
∑
i∈[n]

[(
yi1
q

)2

+

(
yi0

1− q

)2
]
+
∑
i∈[n]

∑
k ̸=i

σik

[(
yi1
q

)2

+

(
yi0

1− q

)2

+

(
yk1
q

)2

+

(
yk0
1− q

)2
]

≥ q(1− q)

∑
i∈[n]

y2i +
∑
i∈[n]

∑
[n]∋k ̸=i

σikyiyk


=Var[τ̂ ],

where the inequality simply follows from the basic inequality 2xy ≤ x2 + y2 and the fact that

yi =
yi1
q + yi0

1−q .

Following Imai et al. (2009) and Bojinov et al. (2020), we suggest using
[
τ̂ − zα/2

√
σ̂2, τ̂ + zα/2

√
σ̂2
]

for an α-level confidence interval of the total market effect τ . This is a common heuristic, and we

leave its formal analysis for future work.
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(a) Case 1: σDP, σhalf , σpair, and σind (b) Case 1: σhalf/σDP and σpair/σDP

(c) Case 2: σDP, σhalf , σpair, and σind (d) Case 2: σhalf/σDP and σpair/σDP

(e) Case 3: σDP, σhalf , σpair, and σind (f) Case 3: σhalf/σDP and σpair/σDP

Figure 8: Box plots of the values σDP, σhalf , σpair, and σind (left column) and the ratios σhalf/σDP and
σpair/σDP (right column) over 104 samples for each case. The interpretation of the box plots is the same as
in Figure 3.
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Case 2 Case 3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Figure 9: Box plot of the ratio σDP/τa over 104 samples for Cases 2 and 3. The interpretation of the box
plot is the same as in Figure 3.
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