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Abstract

We study the problem of scheduling a set of J jobs on M machines with stochastic job
processing times when no preemptions are allowed and the weighted sum of expected comple-
tion time objective. Our model allows for “unrelated” machines: the distributions of processing
times may vary across both jobs and machines. We study static routing policies, which assign
(or “route”) each job to a particular machine at the start of the problem and then sequence
jobs on each machine according to the WSEPT (weighted shortest expected processing time)
rule. We discuss how to obtain a good routing of jobs to machines by solving a convex quadratic
optimization problem that has J ×M variables and only depends on the job processing distri-
butions through their expected values. Our main result is an additive performance bound on
the sub-optimality of this static routing policy relative to an optimal adaptive, non-anticipative
scheduling policy. This result implies that such static routing policies are asymptotically optimal
as the number of jobs grows large. In the special case of “uniformly related” machines - that is,
machines differ only in their speeds - we obtain a similar but slightly sharper result for a static
routing policy that routes jobs to machines proportionally to machine speeds. We also study
the impact that dependence in processing times across jobs can have on the sub-optimality of
the static routing policy. The main novelty in our work is deriving lower bounds on the perfor-
mance of an optimal adaptive, non-anticipative scheduling policy; we do this through the use of
an information relaxation in which all processing times are revealed before scheduling jobs and
a penalty that appropriately compensates for this additional information.

Subject classifications: Stochastic scheduling, unrelated machines, dynamic programming, in-
formation relaxation duality, asymptotic optimality.



1 Introduction

There is a rich and well-developed literature on scheduling problems in the operations research and

computer science communities, and many varieties of scheduling problems arise in a broad range

of applications. In this paper, we study the problem of non-preemptively scheduling a set of J

jobs on a set of M unrelated machines when job processing times are stochastic. Each job j has a

positive weight wj and must be processed non-preemptively by one machine. Machines operate in

parallel and at any given time a machine can process at most one job. Processing times for a job

depend both on the job as well as the machine that processes the job, and the processing time of a

job is not fully known until a job is completed. The objective is to minimize the weighted sum of

expected completion times; following the notation of Graham et al. (1979), this problem is written

as R||E[
∑J

j=1wjCj ].

Hoogeveen et al. (2001) study the deterministic version of this problem and show that no

polynomial time approximation scheme exists if P 6= NP. In the stochastic case, the problem

may be formulated as a stochastic dynamic program in which we minimize over non-anticipative

policies, but the effort in computing an optimal policy scales exponentially in the number of jobs.

Furthermore, optimal policies may be complex: for example, Uetz (2003) shows that deliberately

idling machines can be optimal even when machines are identical. Given the difficulty of the

problem, we typically can only consider suboptimal, heuristic policies. In this paper, we study a

class of static policies and analyze their performance relative to an optimal non-anticipative policy,

with an aim of showing that these policies are asymptotically optimal in the regime of many jobs.

When processing times are deterministic, the problem reduces to two sets of decisions: first,

to which machines to assign or route jobs and, second, how to sequence jobs optimally on each

machine. For deterministic scheduling on one machine, Smith (1956) showed that the optimal

sequencing of jobs is in decreasing order of the ratio of weight to processing time. Rothkopf (1966)

extended this result to the single machine stochastic scheduling problem 1||E[
∑J

j=1wjCj ], showing

that sequencing jobs in decreasing order of the ratio of weight to expected processing time is

optimal. This sequencing is referred to as the WSEPT (Weighted Shortest Expected Processing

Time) rule. Motivated by these insights, we consider static routing policies that at the start of

the problem route each job to a given machine, then sequence the jobs routed to each machine
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according to WSEPT. To find an optimal static routing policy, the task then reduces to optimizing

over the routing.

The objective of the resulting optimization problem is quadratic but not convex. For the

deterministic version of this problem, Sethuraman and Squillante (1999) and Skutella (2001) in-

dependently proposed a convex relaxation to efficiently compute a routing and showed that the

resulting solution performs within a factor of 3
2 of optimal. Inspired by these papers, we also use

convex relaxations to optimize over static routing policies for the stochastic problem. This leads

to convex quadratic optimization problems with the same form as in Sethuraman and Squillante

(1999) and Skutella (2001) with job processing times set to their expected values. Our main result

is establishing an additive performance guarantee on the sub-optimality of these static routing poli-

cies. A corollary to this result is that, as the number of jobs grows large relative to the number of

machines, these static routing policies are asymptotically optimal, provided job weights, expected

processing times, and the coefficients of variation of processing times are uniformly bounded.

The main challenge is establishing a good lower bound on the performance of an optimal non-

anticipative, adaptive scheduling policy. The result in this paper is qualitatively similar to an

additive guarantee developed by Möhring et al. (1999) for the case when processing times are

identical across machines (in particular, see Corollary 4.1 of that paper) but extended to the case

with unrelated machines. The key technology used by Möhring et al. (1999) to develop lower

bounds are polymatroid inequalities that describe the performance space of expected completion

times achievable by feasible policies. This builds upon similar inequalities in Schulz (1996) and Hall

et al. (1997) for deterministic scheduling on identical machines; a key step in establishing these

inequalities is effectively an aggregation of jobs across machines, which appears to rely critically

on job times being the same across machines. As we show in Section 5, bounds based on such

relaxations of the performance space can be generalized to the special case of uniformly related

machines (i.e., machines differ only in their speeds), but it is unclear how to generalize this approach

to the more general case of unrelated machines.

In contrast, we derive lower bounds on the performance of an optimal scheduling policy by

using a duality approach based on information relaxations. This approach involves relaxing some

or all of the non-anticipativity constraints and imposing a penalty that punishes violations of the

non-anticipativity constraints. The theory behind this approach is developed in Brown et al. (2010)
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and builds upon earlier work on “martingale duality methods”, independently developed by Rogers

(2002) and Haugh and Kogan (2004) for pricing American options. A penalty is said to be dual

feasible if it does not penalize any non-anticipative policy in expectation. Brown et al. (2010)

establish weak and strong duality results: with any information relaxation and any dual feasible

penalty, we obtain a bound on the performance of an optimal policy and there exists an “ideal”

dual feasible penalty such that the bound is tight.

In this paper we focus exclusively on perfect information relaxations in which all job processing

times are revealed before making any scheduling decisions. The perfect information problem then

reduces to solving a deterministic scheduling problem for a given realization of job processing times.

Absent a penalty, the resulting lower bound may be quite weak, especially when job processing times

are highly uncertain. As a result, penalties are needed, and we develop dual feasible penalties that

improve the lower bound. An attractive feature of this approach is that the problem reduces to the

analysis of deterministic scheduling problems in every sample path, and we can leverage ideas from

deterministic scheduling in this analysis - namely, the convex relaxations developed by Sethuraman

and Squillante (1999) and Skutella (2001). This allows us to “close the loop” and relate the resulting

lower bound on performance of an optimal adaptive, non-anticipative policy to the performance of

the static routing policy.

The paper is organized as follows. Section 1.1 reviews some relevant literature. In Section 2 we

formulate the problem, and in Section 3 we discuss static routing policies. Section 4 presents the

main performance analysis results and an overview of the key steps of the proof. Section 5 studies

the special case of uniformly related machines, and we show how to obtain a slightly stronger

result using a very simple static routing policy that routes jobs proportionally to machine speeds.

In Section 6 we discuss the impact that dependence in processing times on jobs can have on the

sub-optimality of static routing policies. In Section 7 we demonstrate the performance of the static

routing policies and the lower bounds we develop on randomly generated examples with up to 1,000

jobs. Section 8 concludes. The main proofs are in Appendix A; additional proofs and derivations

are in (online) Appendices B, C, and D.
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1.1 Literature Review

Our paper has connections to several streams of papers that analyze different forms of scheduling

problems using different techniques.

Time-Indexed Linear Programs In time-indexed formulations, the planning horizon is divided

into discrete time periods and binary variables are used to indicate whether a job is processed in a

machine in a given time period. Linear programming (LP) relaxations of time-index formulations

provide strong lower bounds, which have been extensively used to develop approximation algorithms

for deterministic scheduling problems (see, e.g., Hall et al. 1997; Schulz and Skutella 2002). In

recent, related work, Skutella et al. (2016) study static routing policies for stochastic scheduling on

unrelated machines. The static routing policies they consider are based on a novel time-indexed LP

relaxation. This time-indexed LP relaxation is powerful in that the approach allows for extensions

such as release dates before which jobs cannot be processed. Moreover, Skutella et al. (2016) derive

strong constant factor approximation results for versions of the problem both with and without

release dates. However, the approach requires a discretization of the time dimension, a potentially

large number of variables, and a full input of all cumulative distributions of job processing times

along the discretization. In contrast, the static routing policies we consider, while more limited in

scope (e.g., we do not handle release dates), are simple and intuitive, only require solving a convex

quadratic problem with J ×M variables, and only use the job weights and the expected values of

job processing times as inputs. Moreover, our focus is on the asymptotic regime with many jobs

and we develop an additive performance bound with that goal in mind. Given that the policies

that we study appear to be simple - especially compared to an optimal adaptive, non-anticipative

policy - and use little information about processing time distributions, it is perhaps surprising that

these policies can perform well.

Fluid Relaxations for High-multiplicity Scheduling The high-multiplicity version of a scheduling

problem assumes that jobs can be partitioned into a small number of types with all jobs being

identical within a type. When the number of jobs within each type is large, it has been shown that

many scheduling problems can be well approximated using fluid relaxations in which discrete jobs

are replaced with a flow of continuous fluid. This approximation builds on the observation that,
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when every machine processes many jobs, the contribution of each job is infinitesimal and the sum

of realized processing times tends to concentrate around its mean.

Bertsimas et al. (2003) study a deterministic job-shop scheduling problem with the objective of

minimizing the total holding cost. They develop an approximation algorithm based on appropriately

rounding an optimal solution of a fluid relaxation and show that this algorithm is within an additive

amount from optimal and is asymptotically optimal when the number of jobs is large. Fluid models

have been applied in a number of stochastic problems as well, such as multi-class queueing networks

(e.g., Maglaras 2000 and Nazarathy and Weiss 2009) and stochastic processing networks (e.g., Dai

and Lin 2005 and Dai and Lin 2008).

Through the use of a fluid relaxation, it may well be possible to show that simple heuristic

policies, like the static routing policy considered in our paper, are asymptotically optimal when

the number of jobs is large. This involves showing, using the functional law of large numbers, that

the system behavior under an admissible policy converges almost surely to a solution of the fluid

problem. Asymptotic optimality then follows because the proposed policy is optimal for the fluid

problem. Typically, most papers restrict attention to work-conserving policies that are independent

of the size of the problem (see, e.g., Theorem 4.1 in Dai 1995). Such policies are not necessarily

optimal in our setting: as discussed, Uetz (2003) shows that deliberately idling machines can be

optimal even when machines are identical. Additionally, the fluid problem typically does not provide

a bound for the finite, discrete stochastic system, and only establishes optimality in the limit (an

exception is Bertsimas et al. 2003, who provide an additive performance guarantee based on their

fluid relaxation analysis for a deterministic job shop scheduling problem).

An advantage of the perfect information relaxation approach is that it provides an additive

performance bound on the sub-optimality of the static routing policy relative to an optimal adap-

tive, non-anticipative scheduling policy (which might not be work-conserving). This bound holds for

problems of all sizes and not only in the limit, which in turn provides an explicit rate of convergence

to optimality.

Primal-dual Schemas and Dual-fitting Our approach is in spirit similar to the primal-dual

schema and the closely related dual-fitting approach used to design approximation algorithms in

many combinatorial and stochastic optimization problems (see, e.g., Bar-Yehuda and Even 1981,
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Agrawal et al. 1995, Jain and Vazirani 2001). In such an approach, one typically uses a candidate

primal feasible solution to design a dual feasible solution to a relaxation (typically, an LP relax-

ation) of the original problem; the objective value of this dual feasible solution then provides a

bound that ideally can be related to the performance of the candidate solution.

The idea of “dual-fitting” is closely related, and involves constructing a good dual feasible

solution by properly scaling an initial candidate dual solution. Both Anand et al. (2012) and Gupta

et al. (2017) use a dual-fitting approach to study variations of scheduling problems. Anand et al.

(2012) consider several deterministic scheduling problems with different objectives and preemption,

whereas Gupta et al. (2017) study an online version of the stochastic and non-preemptive scheduling

problem on unrelated machines with a weighted sum of expected completion times objective in

which jobs arrive over time. Applying a dual fitting approach to the time-indexed LP, both of

these papers derive constant-factor guarantees for the heuristic policies that they study.

Our approach can be viewed as a primal-dual scheme in that we use our “primal feasible solu-

tion” (the static routing policy) to generate dual variables that play a key role in the performance

bound. Specifically, to obtain a performance bound, we first consider the (penalized) perfect infor-

mation relaxation, which relaxes the non-anticipativity constraints. This problem is a deterministic

scheduling problem for every realization of job processing times. We then consider a convex relax-

ation of this problem, and further consider a Lagrangian dual of this relaxation that dualizes the

constraints that require each job be assigned to exactly one machine. This procedure provides a

lower bound for any dual feasible penalty and any value of the Lagrange multipliers. By properly

designing the penalty and setting the Lagrange multipliers to be equal to those from the convex

relaxation used to generate the static routing policy, we show that the optimal value of the penal-

ized perfect information problem is “close” to the performance of our static routing policy in every

sample path.

Information Relaxations The use of information relaxations to this point has largely been as a

method for computing numerical bounds on specific large-scale problem instances; in contrast, here

we use the approach as a proof technique to derive analytical bounds. This follows recent work

by Balseiro and Brown (2016); we refer the reader to that paper for a more thorough literature

review on information relaxations. Balseiro and Brown (2016) study stochastic scheduling on

6



identical parallel machines (in addition to some other problems) and recover some of the results from

Möhring et al. (1999). Specifically, Balseiro and Brown (2016) study the WSEPT priority policy by

combining performance space relaxations and information relaxations; this proof technique does not

extend to the unrelated machine case. In addition to studying a more general stochastic scheduling

problem than Balseiro and Brown (2016), our static routing policy is different than the WSEPT

priority policy they study, our penalty is quite different than the one considered there (namely, we

have a routing component that is critical for our results - see Section 4.3 below), and our analysis

of the information relaxations relies on quadratic programming and Lagrangian duality whereas

their analysis relies on linear programming relaxations of the performance space.

Offline Analysis Another line of work studies the performance of heuristic policies relative to the

performance of an optimal “offline” algorithm that knows all processing times in advance (i.e., what

we call the perfect information relaxation without penalty; see, e.g., Scharbrodt et al. 2006; Souza

and Steger 2006). For example, Souza and Steger (2006) show that the expected competitive ratio

of the WSEPT list priority policy - given by the expected ratio of the performance of WSEPT to

that of the perfect information relaxation - is at most 3 when job processing times are identical

across machines and exponentially distributed. In general, no non-anticipative policy can achieve

asymptotic optimality with respect to the (unpenalized) perfect information benchmark. Thus, as

in Möhring et al. (1999) and Skutella et al. (2016) and other papers, we measure the performance

of heuristic policies relative to the performance of an optimal adaptive, non-anticipative policy.

2 Problem Formulation

We consider the problem of scheduling a set of jobs on unrelated machines with the objective of

minimizing the weighted sum of expected completion times when no preemptions are allowed. Job

processing times are stochastic, and the realized processing times of each job are learned only after

completion of the job. Each job must be processed by one machine. Machines may work in parallel

but, at any given time, a machine can process at most one job. We let J = {1, . . . , J} denote a

set of jobs to be scheduled on a set of machines M = {1, . . . ,M}. We denote the processing time

of job j ∈ J on machine m ∈ M by pjm, which is a random variable with positive expected value
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(denoted by E[pjm]) and finite variance (denoted by Var[pjm]). In Remark 4.1 we discuss how our

results extend when each job can only be processed by a subset of machines. With the exception

of Section 6, we assume processing times are independent across jobs. For our main results in

Section 4, we make no assumptions about the dependence of processing times across machines for

each job. Because preemptions are not allowed, jobs are independent, and each job is assigned to

exactly one machine in every sample path, the dependence structure across machines for each job

has no impact on the expected performance of any non-anticipative scheduling policy.

We let Cj denote the completion time of job j ∈ J : that is, Cj denotes the sum of the time

until the processing of j starts and the realized processing time of j. Each job has a positive weight

wj and the objective is to minimize E[
∑

j∈J wjCj ]. We let Π denote the set of non-anticipative,

adaptive policies. In this model time is continuous and decision epochs correspond to times when

some machine is available; a policy π ∈ Π determines the next job to be processed at each decision

epoch based on the information available at that time. We let Cπj denote the completion time of

job j under policy π ∈ Π. We can write the problem as

V ∗ = min
π∈Π

E

∑
j∈J

wjC
π
j

 ,
where V ∗ denotes the performance of an optimal non-anticipative adaptive policy.

3 Static Routing Policies

An optimal policy will generally assign jobs to machines dynamically based on the realizations

of processing times. In general, solving the associated stochastic dynamic program (DP) for an

optimal policy requires tracking the state of every job (uncompleted, completed, or assigned to a

particular machine) as well as the elapsed processing times for all jobs currently in process; we

provide a description of the DP in Appendix C. Given the difficulty of finding an optimal policy

even for problems with few jobs, we instead consider a static routing policy that, at the start of the

problem, assigns each job j ∈ J to machine m ∈ M with probability xjm, independently across

jobs, and then sequences the jobs assigned to each machine m ∈M in decreasing order of weight per

expected processing time rjm , wj/E[pjm]. This sequencing is referred to as the WSEPT (Weighted
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Shortest Expected Processing Time first) rule. As mentioned in the introduction, Rothkopf (1966)

showed that the WSEPT rule minimizes the expected total weighted completion time on each single

machine. Thus, for a given routing of jobs to machines, the WSEPT rule is the optimal sequencing.

We let X = {x = (xjm)j∈J ,m∈M ∈ RJ×M+ :
∑

m∈M xjm = 1, ∀j ∈ J } denote the set of all

routing matrices and V R(x) denote the expected performance of the static routing policy when

jobs are routed according to routing matrix x ∈ X . For machine m ∈ M, ≺m denotes the total

order that sorts jobs by the WSEPT rule: that is, jobs i, j ∈ J satisfy that i ≺m j if rim > rjm (if

rim = rjm, we use the convention that i ≺m j if and only if i < j). Using linearity of expectations

and the fact that jobs are routed independently, we can then write V R(x) as

V R(x) =
∑
j∈J

wj
∑
m∈M

xjm

(
E[pjm] +

∑
i≺mj

ximE[pim]
)
.

We note that given any stochastic (i.e., non-integer) routing matrix x ∈ X , it is straightforward to

obtain a deterministic routing matrix whose performance is no worse than V R(x) using the method

of conditional probabilities (see, e.g., Motwani and Raghavan 1995).

We will show that with a “smart” choice of the routing matrix, the static routing policy is

asymptotically optimal as the number of jobs grows large. We will make this precise in Section 4.

We next show how to obtain such a routing matrix by solving a convex quadratic optimization

problem.

3.1 Optimal Static Routing

To obtain the optimal static routing matrix, we can, in theory, optimize over the routing matrix

directly, i.e., we can solve

min
x∈X

V R(x). (1)

The expected performance of a static routing policy, V R(x), is not convex in x because the quadratic

form is not positive semi-definite.1 As a result, we will instead solve a convex relaxation of (1).

Sethuraman and Squillante (1999) and Skutella (2001) develop convex relaxations for the de-

terministic version of this problem. This approach involves adding a sufficiently large diagonal

1Problem (1) can be formulated as a binary linear program. We show this formulation in Appendix D.
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to the quadratic form to make the objective convex and subtracting a commensurate linear term

with the net effect of providing a lower bound on the problem. We adapt this method to obtain a

convex relaxation to V R(x). In this result and in later discussions it will be helpful to denote by

Rm = (rmij ) ∈ RJ×J the matrix such that

rmij =


rim i = j,

rim j ≺m i,

rjm i ≺m j.

In addition, we denote the vector of expected processing times on machinem by E[pm] = (E[pjm])j∈J ∈

RJ , and denote by diag(E[pm]) ∈ RJ×J the diagonal matrix whose diagonal entries are E[pm].

Lemma 3.1. Let cm =
(
wjE[pjm]

)
j∈J ∈ RJ and Dm = diag(E[pm])Rmdiag(E[pm]) ∈ RJ×J , and

consider the optimization problem

ZR , min
x∈X

∑
m∈M

1

2
c′mxm +

1

2
x′mDmxm, (2)

where xm =
(
xjm

)
j∈J ∈ [0, 1]J . Then (2) is a convex optimization problem; moreover, ZR ≤ V R(x)

for all routing matrices x ∈ X .

Problem (2) is a convex quadratic optimization problem with J ×M variables and linear con-

straints that impose the requirement that all jobs must be assigned to one machine. Problem (2)

is equivalent to the convex relaxations in Sethuraman and Squillante (1999) and Skutella (2001)

when job processing times all equal their expected values. The objective of (2) can be written as

V R(x)− 1
2

∑
j∈J wj

∑
m∈M E[pjm]xjm(1− xjm), which shows that the lower bound of Lemma 3.1

is tight when the optimal solution of (2) is integral. We let x∗ denote an optimal solution of (2).

Using the previous expression, we can relate the expected performance of the associated static

routing policy (which we denote simply by V R) to the optimal objective of (2) as

V R , V R(x∗) = ZR +
1

2

∑
j∈J

wj
∑
m∈M

x∗jm(1− x∗jm)E[pjm] . (3)

In all discussions that follow, unless otherwise stated, when we say “the static routing policy,” this

10



should be understood to mean a static routing policy induced by an optimal solution of (2), which

will be our main focus. In contrast, an “optimal static routing policy,” should be understood to

mean a static routing policy induced by an optimal solution of (1).

4 Performance Analysis

In this section, we provide our main results.

Theorem 4.1. Any static routing policy obtained from an optimal solution of (2) satisfies

V ∗ ≤ V R ≤ V ∗ +
1

2

∑
j∈J

wj

(M − 1

M
max
m∈M

E[pjm] + max
m∈M

Var[pjm]

E[pjm]

)
. (4)

In particular, if Var[pjm]/E[pjm]2 ≤ ∆ holds for all jobs j ∈ J and machines m ∈ M, then the

static routing policy satisfies

V ∗ ≤ V R ≤ V ∗ +
(M − 1

2M
+

∆

2

)∑
j∈J

wj max
m∈M

E[pjm].

We prove Theorem 4.1 by bounding the performance V R of the static routing policy from above

in terms of ZR and bounding the optimal performance V ∗ from below by using a penalized perfect

information relaxation. By properly choosing the penalty in the information relaxation, we can

connect the lower bound to ZR. The analysis leads to a gap between these bounds that is linear in

the number of jobs.

We note that in the case with identical machines, i.e., when pjm does not vary with m for every

job j ∈ J , (4) leads to

V R − V ∗ ≤ 1

2

∑
j∈J

wjE[pj ]

(
M − 1

M
+

Var[pj ]

E[pj ]2

)
.

This is nearly identical to the sub-optimality gap established for the WSEPT priority policy in

Corollary 4.1 of Möhring et al. (1999), with the difference that the coefficient on the second term is

slightly weaker (1
2 vs. M−1

2M ) than the result in Corollary 4.1 of Möhring et al. (1999). In Section 5,

we establish a slightly stronger result for a different static routing policy in the case of uniformly

related machines; this result reduces to the same gap as in Corollary 4.1 of Möhring et al. (1999)
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when machines are identical.

If job processing times are deterministic, then a static routing policy is optimal. Note that in

this case the variance term in (4) is zero. Thus we can interpret the first term in the gap in (4)

as the performance loss due to employing a convex relaxation to find a good routing. If processing

times are stochastic, however, the scheduling problem is more challenging, as scheduling policies

may be adaptive to realized processing times. Thus, we can interpret the second term in the gap

in (4) as the performance loss due to restricting to static policies, which by definition ignore the

evolution of job processing information over time.

If we fix the number of machines M and consider scaling the number of jobs J , then the optimal

performance V ∗ scales quadratically with J , because on average each of the J jobs has to wait for

Ω(J) jobs before being processed. From Theorem 4.1, the gap between the performance of the static

routing policy and V ∗, however, only scales as O(J), provided job weights, mean processing times,

and coefficients of variation of processing times are uniformly bounded as J grows. Theorem 4.1

thus implies that the static routing policy is asymptotically optimal under this scaling. This can in

fact be strengthened: asymptotic optimality holds as long as the number of jobs grows faster than

the number of machines.

Corollary 4.2. Suppose w ≤ wj ≤ w̄, p ≤ E[pjm] ≤ p̄, and Var[pjm]/E[pjm]2 ≤ ∆ for all jobs j ∈ J

and machines m ∈M, for some positive constants w, w̄, p, p̄, and ∆. If M/J
J→∞−−−→ 0, then

V R − V ∗

V ∗
J→∞−−−→ 0.

In the next two subsections, we provide further details on the proof of Theorem 4.1; we now

describe some high-level intuition as to why we might expect the static routing policy from problem

(2) to perform well when there are many jobs relative to machines. First, as we will show shortly,

the performance loss of applying a convex relaxation to find a good static routing relative to the

optimal static routing is not substantial when there are many jobs. The question then becomes:

why should we expect an optimal static routing policy to perform well at all in this regime?

Intuitively, an optimal static policy attempts to optimally balance expected job workload statically

across machines when jobs are sequenced at each machine by WSEPT. By committing jobs to

machines at the outset, the optimal static policy may suffer relative to an optimal, adaptive policy,
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which balances workloads dynamically depending on machine availability. When every machine

has to process many jobs, however, the expectations used in the static routing policy’s objective

become good approximations of the realized workload, as the total processing time on each machine

will tend to concentrate around its mean. Thus, the benefit of dynamically reacting to the realized

workload is small in relative terms and we might expect the optimal static routing policy to perform

well, as it optimizes an objective function that provides a very good approximation of the problem.

It is perhaps interesting to note that, although this intuition for the asymptotic optimality

result rests on averaging (sums of independent variables concentrating around their mean), we do

not invoke any concentration inequalities in establishing the performance bounds.

Remark 4.1 (Infeasible job-machine assignments). The upper bound in (4) involves taking, for each

job, the maximum of the expected processing times across machines. In some applications, machines

may be specialized and simply unable to process certain jobs - i.e., E[pjm] = ∞ for some (j,m)

pairs. In such problems, (4) would be a useless bound. A simple modification, however, corrects for

this. Specifically, we letMj ⊆M denote the set of machines that are feasible to job j, and include

the constraints that xjm = 0 for all m /∈Mj for all j ∈ J in the definition of the set X of feasible

routing matrices. Since an optimal non-anticipative policy would never use such assignments, these

constraints are valid in all bounds we derive. The modified version of (4) is then

V ∗ ≤ V R ≤ V ∗ +
1

2

∑
j∈J

wj

(M − 1

M
max
m∈Mj

E[pjm] + max
m∈Mj

Var[pjm]

E[pjm]

)
.

Asymptotic optimality as in Corollary 4.2 follows under the weaker requirement that the conditions

on the processing times’ means and coefficients of variation hold for all feasible job-machine pairs.

Overview of Proof Theorem 4.1 follows from four key steps:

1. We bound from above the performance V R of the static routing policy in terms of the op-

timal value ZR of the convex relaxation plus a term that is linear in the number of jobs

(Proposition 4.3).

2. We bound from below the performance V ∗ of an optimal adaptive, non-anticipative policy

using a penalized perfect information relaxation. The penalized perfect information relax-

ation involves relaxing the non-anticipativity constraints (i.e., revealing all job processing
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times in advance) and adding to the objective a penalty that punishes violations of the non-

anticipativity constraints. The penalty we use has two components:

(a) A sequencing penalty, which penalizes the perfect information scheduler for prioritizing,

on each machine, jobs that have a high ratio of weight to realized processing time.

(b) A routing penalty, which penalizes the perfect information scheduler for routing jobs to

machines that have short realized processing time.

We show that with these penalties, the penalized perfect information problem, in every sample

path, reduces to a deterministic scheduling problem in which it is optimal to sequence jobs

routed to each machine according to WSEPT, plus a term that is linear in the job-machine

assignments and depends on the routing penalty (Lemma 4.4).

3. We further bound from below the objective value of the penalized perfect information prob-

lems in every sample path in terms of ZR. To do this, we consider a convex relaxation of the

resulting deterministic scheduling problem and then dualize the job assignment constraints in

this relaxation. Let ν∗j denote the optimal dual variables for the job assignment constraints in

the convex problem (2) used to generate the static routing policy. By using ν∗j in the routing

penalty as well as in the dual variables of this relaxation, we can show that the penalized

perfect information problem, in every sample path, is bounded from below by ZR less a term

that is linear in the number of jobs (Proposition 4.5). We obtain a lower bound on V ∗ by

taking expectations of this lower bound.

4. By combining the upper bound from step 1 and the lower bound from step 3, we obtain an

upper bound on the sub-optimality gap of the static routing policy, i.e., an upper bound on

V R − V ∗, that is linear in the number of jobs. Under the given conditions on the job weights

and processing distributions, this result implies asymptotic optimality of the static routing

policy as the number of jobs grows large.

We now move to the details of the proof.

4.1 Upper Bound

We first provide an upper bound for the performance V R of the static routing policy, which of

course also bounds the optimal performance V ∗ from above.
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Proposition 4.3. Any static routing policy obtained by solving (2) satisfies

ZR ≤ V R ≤ ZR +
M − 1

2M

∑
j∈J

wj max
m∈M

E[pjm].

Proof. From (3),

V R = ZR +
1

2

∑
j∈J

wj
∑
m∈M

x∗jm(1− x∗jm)E[pjm] ≤ ZR +
1

2

∑
j∈J

wj max
m∈M

E[pjm]
∑
m∈M

x∗jm(1− x∗jm).

Fixing job j, since each x∗jm is non-negative and
∑

m∈M x∗jm = 1, we have
∑

m∈M x∗jm(1− x∗jm) ≤
M−1
M . As a result,

ZR ≤ V R ≤ ZR +
M − 1

2M

∑
j∈J

wj max
m∈M

E[pjm].

Proposition 4.3 states that the gap between ZR and the performance V R of the static routing

policy only grows as O(J), provided job weights and expected processing times are uniformly

bounded. Since both ZR and V R grow as Θ(J2), Proposition 4.3 thus implies ZR will be very close

to the actual performance V R when J is large. Moreover, since ZR ≤ min
x∈X

V R(x) ≤ V R, when J

is large the performance of the static routing policy will be very close to the performance of an

optimal static routing policy.

4.2 Lower Bound

In this section we develop a lower bound on V ∗ by using a penalized perfect information relaxation.

Specifically, we consider a decision maker who has access to all realizations of the processing times

p = {pjm}j∈J ,m∈M before making scheduling decisions. Given a sample path p ∈ RJ×M we can

calculate the optimal value for the sample path in “hindsight” by solving a deterministic scheduling

problem. The expected value with perfect information on processing times provides a lower bound

on V ∗. Unfortunately, this lower bound is not tight in general because the decision maker with

perfect information on processing times can “cheat” (i.e., use information not available to any non-

anticipative scheduling policy) by (a) routing jobs to machines that have correspondingly short

realized processing times, and then (b) for each machine, by sequencing jobs with higher ratio of

weight to realized processing time first. To improve the lower bound we will impose an appropriate
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penalty that creates incentives for the perfect information scheduler to not “cheat” in the routing

and sequencing decisions. In Section 4.3 we show that this penalty is essential to obtain good lower

bounds.

Following Brown et al. (2010), we say a penalty Y π is dual feasible if Y π does not penalize, in

expectation, any non-anticipative policy, i.e., if for all π ∈ Π, E[Y π] = 0 holds.2 The stochastic

scheduling problem including any dual feasible penalty Y π can be written as

V ∗Y = min
π∈Π

E
[∑
j∈J

wjC
π
j + Y π

]
.

Since the penalty is dual feasible, V ∗Y = V ∗. We let V H(p) denote the optimal (deterministic)

value of the penalized perfect information problem for sample path p ∈ RJ×M , where H stands for

“hindsight.” We then have V H , E[V H(p)] ≤ V ∗Y = V ∗. A dual problem then is to choose a dual

feasible penalty so as to maximize the lower bound V H. As shown in Brown et al. (2010), strong

duality holds and we can in theory construct an ideal penalty such that V H = V ∗ by using the

optimal value function to the stochastic scheduling problem. Since the optimal value function is

difficult to characterize in general, we will instead consider simpler penalties that will allow us to

relate the lower bound V H to the performance of the static routing policy.

Specifically, to compensate for possible cheating at the routing and sequencing steps in the

perfect information problem, we consider a penalty of the form Y π = Y π
S + Y π

R , where Y π
S is a

sequencing penalty and Y π
R is a routing penalty. The goal of the sequencing penalty is to create

incentives for the perfect information scheduler to sequence jobs on every machine according to

WSEPT in every sample path; the goal of the routing penalty is to create incentives for the perfect

information scheduler to route jobs similarly to an optimal solution x∗ of (2) in every sample path.

We will also ensure that both penalties are dual feasible.

We set the sequencing penalty Y π
S to be

Y π
S ,

∑
j∈J

∑
m∈M

rjmS
π
jm

(
pjm − E[pjm]

)
,

2Brown et al. (2010) define dual feasible penalties more generally with E[Y π] ≤ 0 for all π ∈ Π, although in most
applications of the approach, including here, a penalty has “no slack” in that equality holds in this condition.
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where Sπjm denotes the starting time of job j on machine m with the convention that Sπjm = 0

if job j is not assigned to machine m. First, note that Y π
S is dual feasible: this follows from the

fact that, for every non-anticipative policy π ∈ Π, the processing time pjm of job j on machine

m is independent of job j’s starting time Sπjm. To understand why the sequencing penalty can be

helpful, imagine a given job j being routed to machine m in the perfect information problem. If

pjm is short (compared to its expected value), to minimize the total weighted completion time, the

perfect information scheduler prefers to sequence j earlier; on the other hand, pjm−E[pjm] < 0, so

the sequencing penalty creates an incentive to start j later, i.e., to delay the sequencing of j. If pjm

is long relative to its expected value, the reverse reasoning applies. With the weights rjm on each

term in the sequencing penalty, it turns out that these competing incentives perfectly cancel, and

it is optimal in the perfect information problem to sequence all jobs on each machine according to

WSEPT in every sample path. We show this formally below.

For the routing penalty Y π
R , we consider the form

Y π
R ,

∑
j∈J

∑
m∈M

xπjm

[
λjm

(
E[pjm]− pjm

)
+ γjm

(
E[p2

jm]− p2
jm

)]
,

where xπjm indicates whether job j ∈ J is assigned to machine m ∈ M under policy π ∈ Π, and

λ = (λjm)j∈J ,m∈M ∈ RJ×M and γ = (γjm)j∈J ,m∈M ∈ RJ×M are two constant matrices that

we will specify shortly. First, Y π
R is dual feasible: this follows from the fact that, for every non-

anticipative policy π ∈ Π, the decision about whether to assign job j to machine m is independent

of pjm. We can view the routing penalty as creating incentives for the perfect information scheduler

to route jobs to machines that have relatively large (compared to their expected values) realized

processing times. Note that Y π
R is independent of the sequencing of jobs on each machine.

Since both Y π
S and Y π

R are dual feasible, the full penalty Y π = Y π
S +Y π

R is also dual feasible. The

penalized perfect information problem can be viewed as a combination of an assignment problem

together with a deterministic scheduling problem. In this deterministic scheduling problem, weights

are proportional to the realized processing times and it is optimal to sequence jobs according to

the WSEPT ordering ≺m on every machine. We now formalize this.
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Lemma 4.4. The penalized perfect information problem with Y π = Y π
S + Y π

R can be written as

V H(p) = min
x∈X

∑
j∈J

∑
m∈M

rjmpjmxjm

(
pjm +

∑
i≺mj

ximpim

)
+xjm

[
(λjm + pjmrjm)

(
E[pjm]− pjm

)
+ γjm

(
E[p2

jm]− p2
jm

)]
.

Proof. We write the completion time as Cj =
∑

m∈MCjm with the assumption that Cjm = 0 if job j

is not assigned to machine m. Using the fact that the starting time is given by Sjm = Cjm−pjmxjm

together with rjm = wj/E[pjm], we can write the objective of the penalized perfect information

problem as

∑
j∈J

wjCj + YS + YR =
∑
j∈J

∑
m∈M

rjmpjmCjm +
∑
j∈J

∑
m∈M

xjmpjmrjm(E[pjm]− pjm) + YR.

The first term corresponds to a sequencing cost that coincides with the objective value of the

deterministic scheduling problem R||
∑J

j=1 w̃jmCj with weights w̃jm = rjmpjm, while the second

and third terms can be interpreted as a routing cost that penalizes the perfect information scheduler

for assigning jobs to machines in which the realized processing time is below the mean. Note that

the routing cost is independent of the order in which jobs are sequenced in a machine, thus once an

assignment is fixed the decision maker should sequence jobs so as to minimize the sequencing cost.

The ratio of weights to realized processing times in this modified scheduling problem is given by

w̃jm/pjm = rjmpjm/pjm = rjm: thus, the optimal ordering is independent of the realized processing

times and coincides with the WSEPT rule. As a result, the penalized perfect information problem

can be written as in the statement.

As we do with the static routing policy, we will work with convex relaxations of V H(p) that are

easier to analyze. Following the steps of Lemma 3.1 applied to the deterministic problem V H(p),

we have

V H(p) ≥ ZH(p) , min
x∈X

∑
m∈M

a′mxm +
1

2
x′mQmxm,

where am =
(

1
2p

2
jmrjm + (λjm + pjmrjm)

(
E[pjm]− pjm

)
+ γjm

(
E[p2

jm]− p2
jm

))
j∈J ∈ RJ and Qm =

diag(pm)Rmdiag(pm) ∈ RJ×J . Note that the matrix Qm is analogous to the matrix Dm in (2) that

we use to compute the static routing policy, with expected job processing times replaced by their
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realized values. The objective in ZH(p) is convex, as the matrices Qm are positive semi-definite by

Lemma 3.1. We denote ZH , E[ZH(p)]. From the above discussion, we have V ∗ ≥ V H ≥ ZH.

We now turn to the issue of how to tune the routing penalty to obtain a good lower bound on

V ∗. Recall that the goal of the routing penalty is to create incentives for the perfect information

scheduler to route jobs in similar fashion to x∗, which is an optimal solution to (2). Since (2) is

a convex optimization problem, we can find an optimal Lagrange multiplier ν∗j on the assignment

constraint for each job; ν∗j represents the marginal cost of assigning a job to any machine at

optimality in (2). By choosing λjm in the routing penalty to be proportional to ν∗j , we align the

marginal cost of routing jobs in the perfect information problem with problem (2), which we use

to obtain a static routing policy. As we now show, this allows us to establish a strong relationship

between ZH(p) and ZR, the optimal value of (2), in every sample path.

Proposition 4.5. Let ν∗j denote an optimal Lagrange multiplier of the constraint
∑

m∈M xjm = 1

in (2). If γjm = −1
2rjm and λjm = ν∗j /E[pjm] + 1

2wj, then for every sample path p,

V H(p) ≥ ZH(p) ≥ ZR − 1

2

∑
j∈J

wj max
m∈M

Var[pjm]

E[pjm]
. (5)

Note that the scaling of ν∗j by 1/E[pjm] is simply a matching of units: ν∗j is measured in units

of objective (weighted time), whereas λjm is in units of objective per time. We also note that the

second term 1
2wj in λjm and the choice of γjm are not critical for the qualitatively important aspect

of the result, which is obtaining a gap in (5) that is linear in the number of jobs. These terms are

merely for the purposes of cleanly expressing this gap in terms of the coefficients of variation of the

job processing times.

Since the penalty is dual feasible, taking expectations over (5), we immediately obtain that

V ∗ ≥ V H ≥ ZH ≥ ZR − 1

2

∑
j∈J

wj max
m∈M

Var[pjm]

E[pjm]
.

Proposition 4.5 together with Proposition 4.3 thus imply Theorem 4.1 and show that the gap

between the optimal performance V ∗ and the performance of the static routing policy V R only

grows as O(J).

In the proof of Proposition 4.5, we bound ZH(p) from below in terms of ZR by dualizing the
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assignment constraints in ZH(p) with Lagrange multipliers ν∗j . The problem then decouples over

machines. Ideally, one would like to show that, for each machine, the optimal static routing vector

x∗m is optimal for the perfect information problem in every sample path. Instead, we show that by

properly perturbing the linear term in the objective of the perfect information problem (which leads

to the gap in (5)) and by setting λjm and γjm as above, the optimal routing of job j to machine m

can be shown to be xH
jm = x∗jmE[pjm]/pjm. This guarantees that the optimal objective value of the

static routing policy ZR coincides with the objective value of the dualized and perturbed perfect

information problem. This follows because the quadratic forms satisfy x∗m
′Dmx

∗
m = xH

m
′Qmx

H
m

(and a similar equality holds for the linear terms). The full proof of Proposition 4.5 and the proof

of Corollary 4.2 are given in Appendix A.

4.3 The Importance of Penalties

Both the routing and sequencing penalties are essential in obtaining good lower bounds on the

performance of an optimal, non-anticipative scheduling policy: we present two examples illustrating

that in the absence of either of these penalties, the perfect information relaxation can be weak (and

in particular, does not provide an asymptotically tight bound). The first example excludes the

sequencing penalty, and the second example excludes the routing penalty.

Example 4.1 (Role of the sequencing penalty). Consider an example with M = 1, and J identical

jobs of weight one and processing times pj having a Bernoulli distribution with mean 0.5. For this

single machine scheduling problem, the static routing policy is optimal, and we have

V R = V ∗ =
J∑
j=1

(
E[pj ] +

∑
i<j

E[pi]
)

=
J2 + J

4
.

Since there is only one machine, the routing penalty has no effect in this example. Without a

sequencing penalty, however, a scheduler with perfect information will “cheat” by scheduling first

all jobs with zero realized processing times. Let N1 be the number of jobs with realized processing

times of one. The random variableN1 has binomial distribution with J trials and success probability

0.5. The expected value of the perfect information problem is

V H = E
[N1(N1 + 1)

2

]
=
J2 + 3J

8
.
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For J large, this lower bound is off from V ∗ by nearly a factor of two.

Example 4.2 (Role of the routing penalty). Consider an example with M = 2, and J identical jobs

of weight one. The processing times of each job on the first machine are deterministic and equal to

pj1 = 0.5; on the second machine each pj2 is given by a Bernoulli distribution with mean 0.5. The

static routing policy simply routes each job randomly according to expected processing times, and

thus xj1 = xj2 = 0.5 for each job j. This leads to

V R =
J∑
j=1

2∑
m=1

1

2

(
E[pjm] +

∑
i<j

E[pjm]

2

)
=
J2 + 3J

8
.

Without a routing penalty, a scheduler with perfect information will “cheat” by routing all jobs that

have zero realized processing times on the second machine (the random machine) to that machine.

This leads to a weak lower bound even with a sequencing penalty. We now show this formally.

Without the routing penalty, the objective of V H(p) (refer to Lemma 4.4) is:

∑
j∈J

wjCj + YS =
∑
j∈J

∑
m∈M

rjmpjmCjm +
∑
j∈J

∑
m∈M

xjmpjmrjm(E[pjm]− pjm) ≤
∑
j∈J

∑
m∈M

rjmpjmCjm,

where the inequality follows from the fact that E[pjm] = pjm for the first machine, and for the

second machine, either pjm = 0 or pjm = 1, and in either case pjm(E[pjm]− pjm) ≤ 0.

Let N1 be the number of jobs with realized processing times of one on the random machine. The

random variable N1 has a binomial distribution with J trials and success probability 0.5. Clearly,

it is optimal to route all other J −N1 jobs to the random machine because they have zero realized

job processing times there. The remaining N1 jobs have “penalized” weights (from the sequencing

penalty) rj2pj2 = 2 and unit realized processing times on the random machine, and unit weights

and processing times of 0.5 on the deterministic machine. It is feasible for the perfect information

scheduler to route 1
5 of the N1 jobs to the random machine and the remaining 4

5 of the N1 jobs

to the deterministic machine (in fact, this can be shown to be asymptotically optimal when J is

large). With this routing in every sample path and the bound above on
∑

j∈J wjCj + YS, we have

V H = E[V H(p)] = E
[
min
x∈X

(∑
j∈J

wjCj+YS

)]
≤ E

[∑
j∈J

∑
m∈M

rjmpjmCjm

]
= E

[N2
1 + 2N1

5

]
=
J2 + 5J

20
.
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For J large, the perfect information bound with a sequencing penalty but no routing penalty in

this example is thus off from V ∗ by at least a factor of 5
2 .

5 Uniformly Related Machines

In this section we consider the case of uniformly related machines. Here machines differ only in

their speeds: the processing time of job j on machine m is pjm = pj/sm, where sm > 0 is the speed

of machine m. Although this is a special case of the problem considered in Theorem 4.1, using our

penalized perfect information relaxation approach, we can establish slightly stronger performance

guarantees for a simpler static routing policy. In Section 5.1, we show that similar bounds can also

be obtained using LP-based performance space bounds when machines are uniformly related.

Specifically, we consider the static routing policy induced by xjm = sm/
∑

m′∈M sm′ , which we

refer to as speed proportional routing. This routing policy balances job workload across machines by

routing jobs proportionally to machine speeds. We note that solving problem (2) when machines

are uniformly related does not lead to speed proportional routing, so this policy is different than the

static routing policy studied in Section 4. In the following, we let S denote the sum of the speeds

and assume that machines are indexed in descending order of their speeds, i.e., s1 ≥ s2 ≥ · · · ≥ sM .

We use V S to denote the expected performance of speed proportional routing.

Theorem 5.1. If machines are uniformly related, then speed proportional routing satisfies

V ∗ ≤ V S ≤ V ∗ +
1

2

∑
j∈J

wjE[pj ]
{(2M − 1

S
− 1

κj

)
+
( 1

κj
− 1

S

)Var[pj ]

E[pj ]2

}
, (6)

where κj = sM if Var[pj ]/E[pj ]
2 > 1 and κj = s1 if Var[pj ]/E[pj ]

2 ≤ 1.

If M = 1, then from (6) it follows that V ∗ = V S, which means the performance guarantee in

Theorem 5.1 is sharp. If all speeds are equal, then the problem reduces to that of identical parallel

machines; without loss of generality we can set sm = 1 in this case and (6) then reduces to

V ∗ ≤ V S ≤ V ∗ +
M − 1

2M

∑
j∈J

wj

(
E[pj ] +

Var[pj ]

E[pj ]

)
.

This is the same sub-optimality gap as in Corollary 4.1 in Möhring et al. (1999) for the identical
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parallel machine problem, albeit as mentioned Möhring et al. (1999) study a different policy. It

is also perhaps interesting to note that when Var[pj ]/E[pj ]
2 ≤ 1 for all jobs j ∈ J (e.g., uniform,

exponential, or Erlang distributions), the gap in (6) does not depend on the slowest machine other

than through the sum of speeds.

In the proof of Theorem 5.1 we show that speed proportional routing is optimal for a perturbed

version of the penalized perfect information problem in which we slightly modify the linear terms of

the objective. In the case of uniformly related machines, the routing penalty is not critical to obtain

the qualitative result, and the routing penalty is introduced for the purpose of cleanly expressing

this gap in terms of the coefficients of variation of the job processing times. Intuitively, because the

processing times of a job are perfectly correlated across machines, the perfect information scheduler

cannot cheat by routing jobs to machines that have correspondingly short realized processing times.

This dependence of processing times across machines allows us to provide a bound for the speed

proportional routing policy that is in some cases sharper to the one given in Theorem 4.1. The

proof of Theorem 5.1 is given in Appendix A.4.

5.1 LP-Based Performance Space Bounds for Uniformly Related Machines

For stochastic scheduling on identical parallel machines, Möhring et al. (1999) provides a polyhe-

dral relaxation of the performance space, and shows that this polyhedron is a polymatroid; these

results build upon similar relaxations developed by Schulz (1996) for deterministic scheduling prob-

lems. This relaxation critically relies on job processing times being the same across machines: the

intuition is that M identical machines working in parallel tend to process jobs at a similar rate

as a single machine that is M times faster. Schulz (1996) derives similar polyhedral relaxations of

the performance space for deterministic scheduling on uniformly related machines (see Lemma 9 of

Schulz 1996); we are not aware of similar results that extend to the more general case of stochastic

scheduling on unrelated machines.

In this subsection, we show that for the case of uniformly related machines, we can in fact

derive polyhedral representations of the performance space that lead to similar guarantees (albeit

with slightly weaker constants) as in Theorem 5.1. This representation leverages the facts that (i)

when machines are uniformly related, the processing times of jobs on different machines will be

proportional and (ii) the processing time of any one job can always be bounded from below by the
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time it would take on the fastest machine. Given this intuition, it is not clear that such results

could be extended to the case of unrelated machines.

We have the following result, which parallels Theorem 3.1 in Möhring et al. (1999) in the case

of uniformly related machines.

Proposition 5.2. If machines are uniformly related, then for every feasible, non-anticipative policy,

the expected completion times E[Cj ] of jobs satisfy, for all A ⊆ J ,

∑
j∈A

E[pj ]E[Cj ] ≥
1

2S

(∑
j∈A

E[pj ]
)2
− 1

2

( 1

sM
− 1

S

)∑
j∈A

Var[pj ]−
( 1

2sM
− 1

s1

)∑
j∈A

E[pj ]
2 . (7)

As we have assumed above, if processing times satisfy Var[pj ]/E[pj ]
2 ≤ ∆ for all jobs j ∈ J ,

then (7) imply that

∑
j∈A

E[pj ]E[Cj ] ≥
1

2S

(∑
j∈A

E[pj ]
)2
−
(( 1

2sM
− 1

s1

)
+

∆

2

( 1

sM
− 1

S

))∑
j∈A

E[pj ]
2 , (8)

holds for all feasible, non-anticipative policies and for all A ∈ J . We thus obtain a lower bound

on V ∗ by solving the LP min
{∑

j∈J wjE[Cj ] subject to (8)
}

treating E[Cj ] as decision variables.

It is straightforward to show that the set function on the right-hand side of (8) is supermodular,

and thus a solution to this problem is given by the greedy algorithm due to Edmonds (1971). We

assume without loss of generality that w1
E[p1] ≥

w2
E[p2] ≥ · · · ≥

wJ
E[pJ ] and let CLP denote an optimal

solution to this problem. Since a greedy solution is optimal, it follows that

CLP
j =

1

S

j∑
k=1

E[pk]−
(( 1

2sM
+

1

2S
− 1

s1

)
+

∆

2

( 1

sM
− 1

S

))
E[pj ].

Since
∑

j∈J wjC
LP
j ≤ V ∗, this leads to a bound on the sub-optimality gap of the speed proportional

routing policy:

V S − V ∗ ≤ V S −
∑
j∈J

wjC
LP
j =

1

2

(( 1

sM
+

2M − 1

S
− 2

s1

)
+
( 1

sM
− 1

S

)
∆
)∑
j∈J

wjE[pj ]. (9)

The bound in (9) is qualitatively similar to that of Theorem 5.1, and also implies asymptotic

optimality of speed proportional routing in the case of uniformly related machines, although the
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gap in Theorem 5.1 has slightly stronger constants.

One might wonder whether such an analysis with performance space bounds generalizes to the

case of unrelated machines. The challenge is that the LP-based bounds on the performance space

are, by design, agnostic to the specifics of how policies might assign jobs to machines. Although

this may seem like a limitation of this approach, in the case of uniformly related machines, we can

nonetheless obtain good (i.e., asymptotically tight) bounds with this approach by leveraging the

fact that processing times are proportional across the machines. We do not know, however, how

to generalize these LP-based bounds on the performance space in the absence of any particular

structure for processing times across machines.

6 Dependent Jobs

The analysis above assumes, consistent with much of the literature on stochastic scheduling, that

processing times are independent across jobs. When job processing times are dependent, static

policies may perform poorly: good scheduling policies may need to be adaptive, as the elapsed

time for jobs in process (or completed) may convey valuable information about the distributions

for unscheduled jobs, which could in turn influence scheduling decisions.

In this section, we study the impact that dependence in processing time distributions can have

on the sub-optimality of the static routing policy, and provide sufficient conditions for asymptotic

optimality of the static routing policy. At a high-level, we use the same proof technique involv-

ing penalized perfect information relaxations, but now more care is required in the definition of

penalties: for example, with dependent jobs, the start time of a job may no longer be independent

of the processing time of the job, and thus the routing and sequencing penalties as defined in

Section 4.2 need not be dual feasible. In terms of the results that follow, the conditions that we

derive for asymptotic optimality of static routing to prevail in the case of dependent jobs are strong

conditions, and we will show by example that these conditions are necessary.

We will describe dependence across jobs in the following way. For a feasible, non-anticipative

scheduling policy π, we let Fπt denote the σ-algebra describing information about processing times

at time t, and again Sπjm denotes the start time of job j on machine m under policy π.
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Assumption 6.1. There exist constants αj and βj such that

∣∣∣E[pjm|Fπt ]− E[pjm]
∣∣∣ ≤ αj , (10)∣∣∣E[p2

jm|Fπt ]− E[p2
jm]
∣∣∣ ≤ βj , (11)

hold a.s. for every j ∈ J , m ∈M, for all π ∈ Π, and for all t ≤ Sπjm.

Assumption 6.1 expresses limits on the amount any feasible, non-anticipative scheduling policy

can “learn” about each job before it is scheduled from the processing times of jobs that are currently

in process or completed. These limits are expressed in terms of maximum absolute deviations αj and

βj in the first and second moments, respectively, of the job processing time distribution relative to

its unconditional (i.e., at t = 0) value. Note that the static routing policy (and its performance) only

depend on processing time distributions through their expected values, so the dependence structure

does not affect V R - but the optimal value V ∗ may be affected by the dependence structure. As in

the case of indepedent jobs, we make no assumptions about the dependence structure of processing

times across machines for each job.

In Appendix B.1 we provide a bound (Theorem B.1) on the sub-optimality of the performance

of the static routing policy. This result is analogous to Theorem 4.1 in the case of independent

jobs, but includes additional terms that depend on αj and βj : these terms can be interpreted as

bounds on the performance loss of the static routing policy due to ignoring the dependence across

jobs. If the dependence across jobs is sufficiently weak, then we might expect the static routing

policy to remain asymptotically optimal as the number of jobs grows. The following result makes

this precise; this result follow from Theorem B.1 by similar arguments as those in Corollary 4.2.

Corollary 6.2. Suppose the conditions on weights and processing times in Corollary 4.2 hold. Let

ᾱ ,
∑

j∈J αj/J and β̄ ,
∑

j∈J βj/J . If ᾱM
3
2
J→∞−−−→ 0, β̄M/J

J→∞−−−→ 0, and M/J
J→∞−−−→ 0, then

V R − V ∗

V ∗
J→∞−−−→ 0.

For a fixed number of machines, the key condition that implies asymptotic optimality of static

routing policy is that the average (over jobs) of αj go to zero as the number of jobs grows large:

in other words, it is sufficient that the “average dependence,” as measured in terms of absolute
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deviations of the expected job processing times in (10), vanishes. The condition on the second

moments is much weaker; for example, it suffices that the conditional variance of processing times

for each job be uniformly bounded for the result to hold. We now show by example that the

condition on expected processing times is in fact necessary for the static routing policy to be

asymptotically optimal.

Example 6.1 (Jobs with limited dependence). Consider an example with M = 1 and J jobs and

all job weights are 1. We assume the number of jobs J is even. The processing time pj of each

job j on the machine follows a Bernoulli distribution with mean 0.5. We assume the processing

times of every pair of adjacent odd- and even-numbered jobs p2i−1 and p2i with i ∈ {1, 2, · · · , J2 }

are dependent, but are independent from all the other jobs. Specifically, the joint distribution of

(p2i−1, p2i) is

P(p2i−1, p2i) p2i = 0 p2i = 1

p2i−1 = 0 qi
1
2 − qi

p2i−1 = 1 1
2 − qi qi

where qi ∈ [0, 1
2 ]. We have P(p2i = 1|p2i−1 = 0) = 1 − 2qi and P(p2i = 1|p2i−1 = 1) = 2qi. If

qi = 1
4 for all job pairs (p2i−1, p2i), all jobs are independent and from Section 4 we know the static

routing policy is asymptotically optimal as J goes to infinity. If qi >
1
4 , adjacent jobs are positively

correlated. In this example we assume qi ≥ 1
4 for all job pairs (p2i−1, p2i) and that jobs are sorted

in decreasing order of qi.

Since the (unconditional) expected processing time of each job is the same (0.5), the static

routing policy simply chooses an arbitrary order of jobs and processes jobs in this order. Thus,

V R =
J∑
j=1

(
E[pj ] +

∑
i<j

E[pi]
)

=
J2 + J

4
.

Now we consider a simple heuristic policy that is adaptive and exploits the correlation among

adjacent jobs. Every time an odd-numbered job 2i− 1 is completed, if p2i−1 = 0, then we continue

to process job 2i; otherwise if p2i−1 = 1, we move job 2i to the end of the sequence and process

the next odd job 2i+ 1 instead because job 2i is more likely to be long as well. When all the odd-

numbered jobs are completed, we process the remaining even-numbered jobs in order. Denote by
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V A the expected performance of this heuristic adaptive policy. It can be shown (see Appendix B.2)

that

V A ≤ 5

16
J2 +

1

8
J +

(
1− J

2

) J
2∑
i=1

qi.

Let q̄ = 2
J

∑J
2
i=1 qi be the average of {qi}

J
2
i=1. Since

V R − V A ≥
q̄ − 1

4

4
J2 −

q̄ − 1
4

2
J (12)

and V A ≥ V ∗, the static routing policy is not asymptotically optimal as J increases whenever

q̄ > 1
4 .

Note that in this example,
∣∣∣E[pj |Ft]− E[pj ]

∣∣∣ ≤ αj = 2(qj − 1
4) for all jobs j and times t ≤ Sπj ,

thus ᾱ = 2(q̄ − 1
4). In this sense, the assumption on ᾱ in Corollary 6.2 is necessary (even with a

fixed number of machines) for the static routing policy to be asymptotically optimal.

Example 6.1 demonstrates that even a very small amount of dependence across jobs can lead

to the static routing policy being asymptotically suboptimal. Even if only a small, fixed fraction

of all the job pairs are weakly dependent (e.g., qj = 1
4 + ε for some ε > 0), and all other jobs are

independent, the static routing policy will not be asymptotically optimal. On the other hand, even

if not asymptotically optimal, the static routing policy may perform well if the dependence (as

measured by the αj) is small, and Theorem B.1 provides a performance guarantee.

7 Numerical Examples

Although the preceding analysis provides a guarantee on the static routing policy and shows that

this policy is asymptotically optimal, it is also helpful to have methods that produce bounds in

specific examples. In particular, we have observed in numerical examples that the lower bounds we

study through the use of penalized perfect information relaxations often lead to very good lower

bounds on the performance of the optimal scheduling policy.

To demonstrate this, we examine the performance of the static routing policy and the penalized

perfect information relaxation lower bound on a set of randomly generated examples. We consider

instances with number of jobs J increasing linearly from 50 to 1000 with step length 50. We
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generate job weights as wj ∼ U[0.5, 1] and expected processing times as E[pjm] ∼ U[0.5, 1], all i.i.d.

We consider 4 cases:

1. M = 4, pjm ∼ U[0, 2E[pjm]],

2. M = 4, pjm ∼ Exponential(1/E[pjm]),

3. M =
√
J , pjm ∼ U[0, 2E[pjm]],

4. M =
√
J , pjm ∼ Exponential(1/E[pjm]).

In cases 1 and 2, M is fixed to be 4; in cases 3 and 4, M scales with J as M =
√
J (specifically,

we round M to the integer closest to
√
J). For consistency across distributions, for each value of

J , all four cases share the same wj , case 1 and case 2 share the same E[pjm], and case 3 and case

4 share the same E[pjm].

In each case and for each fixed J , we calculate: (a) the performance of the static routing

policy V R; (b) the penalized perfect information relaxation lower bound ZH; and (c) the perfect

information relaxation lower bound without penalty ZH
0 . As the static routing policy only depends

on expected processing times as does the associated performance, V R is the same for each value of

J in cases 1 and 2, as well as for each value of J in cases 3 and 4. The values ZH = E[ZH(p)] and

ZH
0 = E[ZH

0 (p)] are estimated with 100 sample paths; this led to very low standard errors in the

results. (We also calculated but do not report here bounds with penalized information relaxations

that omitted either the sequencing penalty or the routing penalty, respectively. These lower bounds

with only one component of the penalty were not asymptotically optimal and were often quite weak

- in some cases these bounds were worse than those with no penalty. Following Section 4.3, this

further underscores the importance of having both the sequencing and routing penalties.)

All bounds are calculated using Matlab on a desktop PC, with the MOSEK optimization toolbox

used to solve the convex quadratic optimization problems. Solving (2) or optimizing ZH(p) in

one sample path are of comparable difficulty. On the smallest examples (J = 50, M = 4), these

optimization problems take about 0.1 seconds to solve; on the largest examples (J = 1000, M = 32),

these optimization problems take about 100 seconds to solve. Considering the complexity of solving

for an optimal policy, these run times appear quite modest by comparison and we could likely reduce

the total computational effort somewhat in a variety of ways (e.g., variance reduction techniques

for the lower bounds, or solution techniques that take advantage of the special assignment structure
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of the optimization problems).

Figure 1 reports the simulation results for cases 1 and 2, and Figure 2 reports the simulation

results for cases 3 and 4. In all these cases, the perfect information bounds with no penalty are

quite weak and the relative gaps using these bounds do not appear to converge to zero. The

penalized perfect information bounds, however, perform very well and clearly convey the asymp-

totic optimality of the static routing policy (on Figures 1a and 1b in particular, the penalized

perfect information bound is almost indistinguishable from the performance of the policy). The

performance gaps are somewhat larger with exponential distributed jobs and when the number of

machines scales with the number of jobs. We suspect these larger gaps are largely due to the lower

bound being somewhat worse in these cases. With more machines, there are more opportunities for

“cheating” in the penalized perfect information problem. Similarly, exponential processing times

are considerably more uncertain than uniform processing times, and thus knowing processing times

in advance is more valuable in this case.

Overall, the gaps are quite small, and in many of the examples we can conclude that the static

routing policy is at worst within a few percent points from optimality. Although we have derived

analytical bounds on the suboptimality of static routing policies, it is encouraging to observe that

static routing policies perform well on these specific examples.

8 Conclusion

We have studied the problem of stochastic scheduling on unrelated machines with a weighted sum

of expected completion times objective. Our main contribution is to bound the loss in using a

simple static routing policy relative to an optimal adaptive, non-anticipative policy; the result

implies that the static routing policies we consider approach optimality in the asymptotic regime

of many jobs. Moreover, the static routing policies we study can be obtained by solving a convex

quadratic optimization problem with J × M variables that only depends on the job processing

distributions through their expected values. In the special case of uniformly related machines,

we also have established a similar but slightly sharper result for a simple static routing policy;

this policy involves no optimization and simply routes jobs proportionally to machine speeds.

Finally, we also study the impact that dependence across job processing times can have on the
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sub-optimality on the static routing policy, and derive some conditions on the dependence under

which static routing is still asymptotically optimal; these conditions are relatively strong and, as

we show by example, necessary. The main technique underlying our results has been the use of

perfect information relaxations with a properly designed penalty.

There are a number of interesting directions to consider moving forward. First, although the

problem of stochastic scheduling on unrelated machines that we study is general in many ways,

there are of course many important variations that we do not consider, such as release dates,

job precedence constraints, and different objectives (e.g., expected makespan). The static routing

policies we study clearly require some modifications to handle such variations, and in fact very

different policies may be necessary. Nonetheless, we believe the machinery we use for developing

lower bounds on optimal performance may be useful for other stochastic scheduling problems with

different features. It would also be interesting to see if the information relaxation duality approach

would be useful in other scheduling problems, e.g., stochastic job shop models. Second, in some

practical applications of the model it may be the case that the problem is too large to solve to

optimality, yet too small for the static routing policies we studied here to be nearly optimal. In such

situations, it would be interesting to consider the use of more sophisticated policies and information

relaxation lower bounds with more sophisticated penalties. Finally, the performance bounds we

derived can be a useful building block in analyzing broader “design” type questions, such as the

problem of selecting the best set of machines to process a fixed set of jobs to minimize a combined

objective of machine cost plus expected completion time. The implications our results have for

variations on this theme (e.g., scheduling problems that include job selection as a decision) may

also be interesting to consider.
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Figure 1: Simulation results with M = 4. Jobs are uniformly distributed in (a) and (c), and are exponentially
distributed in (b) and (d). Standard errors of ZH and ZH

0 are not included in the plots but they are
negligible relative to the cost. The penalized perfect information bound is almost indistinguishable from the
performance of the policy in (a) and (b).
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A Proofs

A.1 Proof of Lemma 3.1

This result is established in both Sethuraman and Squillante (1999) and Skutella (2001); we provide
a proof here for completeness. Let D̃m = (d̃mij ) ∈ RJ×J be the matrix such that

d̃mij =


0 , if i = j ,

wiE[pjm] , if j ≺m i ,

wjE[pim] , if i ≺m j .

The objective in (1) can be written as∑
m∈M

c′mxm +
1

2
x′mD̃mxm =

∑
m∈M

c′mxm −
1

2
x′mdiag(cm)xm +

1

2
x′m

(
D̃m + diag(cm)

)
xm

≥
∑
m∈M

1

2
c′mxm +

1

2
x′m

(
D̃m + diag(cm)

)
xm ,

where we use the fact that x2
jm ≤ xjm because the variables take values in the interval [0, 1]. It is

not hard to check that the matrix Dm = D̃m + diag(cm) is positive semi-definite, which implies
that problem (2) is a convex optimization problem.

A.2 Proof of Proposition 4.5

Define the Lagrangian function of problem (2) to be

L(x,ν) = ν ′1 +

M∑
m=1

1

2
x′mDmxm +

(cm
2
− ν

)′
xm,
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where ν ∈ RJ , xm ∈ RJ , and x = (xm)m∈M ∈ RJ×M . Since problem (2) is convex and all its con-
straints are linear, strong duality holds. Moreover, let x∗ ∈ RJ×M be an optimal solution to problem
(2) and ν∗ ∈ RJ be an optimal Lagrange multiplier of the assignment constraint

∑
m∈M xm = 1

in (2). Because the optimal objective value is finite, Proposition 5.2.1 in Bertsekas (1999) implies
that the optimal solution x∗ minimizes the Lagrangian evaluated at ν∗, or equivalently

ZR = L(x∗,ν∗) = min
x≥0

L(x,ν∗). (13)

Recall that

ZH(p) = min
x∈X

∑
m∈M

a′mxm +
1

2
x′mQmxm,

with vectors am =
(

1
2p

2
jmrjm + (λjm + pjmrjm)

(
E[pjm] − pjm

)
+ γjm

(
E[p2

jm] − p2
jm

))
j∈J ∈ RJ

and matrices Qm = diag(pm)Rmdiag(pm) ∈ RJ×J . For ease of analysis in the future, we instead
consider the following problem:

Z̃H(p) = min
x∈X

∑
m∈M

ã′mxm +
1

2
x′mQmxm,

with vectors ãm =
(
(λjm − 1

2wj)
(
E[pjm] − pjm

)
+ 1

2wjpjm
)
j∈J . Setting γjm = −1

2rjm, a direct

relation between ZH(p) and Z̃H(p) can be given by

Z̃H(p)− ZH(p) ≤
∑
j∈J

max
m∈M

(ãjm − ajm) =
1

2

∑
j∈J

max
m∈M

rjmVar[pjm]. (14)

We now bound Z̃H(p) from below. Let w = (wj)j∈J ∈ RJ . We set λm to be

λm = diag(E[pm])−1ν∗ +
1

2
w.

As a result we have
ãm − ν∗ = −diag(pm)(λm −w). (15)

Define new variables x̃m such that if pjm > 0 then pjmxjm = E[pjm]x̃jm; otherwise, x̃jm can be an
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arbitrary number. Therefore, for every sample path

Z̃H(p)
(i)

≥ ν∗′1 +

M∑
m=1

min
xm≥0

1

2
x′mQmxm + (ãm − ν∗)′xm

(ii)
= ν∗′1 +

M∑
m=1

min
xm≥0

1

2
x′mQmxm − (λm −w)′diag(pm)xm

= ν∗′1 +
M∑
m=1

min
xm≥0

1

2
x′mdiag(pm)Rmdiag(pm)xm − (λm −w)′diag(pm)xm

(iii)

≥ ν∗′1 +
M∑
m=1

min
x̃m≥0

1

2
x̃′mdiag(E[pm])Rmdiag(E[pm])x̃m − (λm −w)′diag(E[pm])x̃m

= ν∗′1 +
M∑
m=1

min
x̃m≥0

1

2
x̃′mDmx̃m +

(cm
2
− ν∗

)′
x̃m

(iv)
= ZR,

(16)

where (i) follows from weak duality, (ii) from (15), (iii) from the change of variables, and (iv) from
(13) because the optimal solution x∗ minimizes the Lagrangian evaluated at ν∗. Combining (14)
and (16), we have for every sample path

V H(p) ≥ ZH(p) ≥ ZR − 1

2

∑
j∈J

wj max
m∈M

Var[pjm]

E[pjm]
.

A.3 Proof of Corollary 4.2

Clearly the ratio is non-negative. Here we bound the ratio from above and then show that the
upper bound converges to zero as the total number of jobs J goes to infinity. From Theorem 4.1,
the difference between V R and V ∗ can be bounded from above by

V R − V ∗ ≤ M(∆ + 1)− 1

2M
w̄p̄J. (17)

On the other hand, according to Proposition 4.5, the optimal performance V ∗ can be bounded from
below by

V ∗ ≥ ZR − ∆

2

∑
j∈J

wj max
m∈M

E[pjm] ≥ ZR − ∆

2
w̄p̄J. (18)

Comparing with (2), ZR can further be bounded from below by ZR, which is the optimal value of
the following convex optimization problem

ZR , min
x∈X

∑
m∈M

1

2
c′xm +

1

2
x′mDxm, (19)

with c =
(
wp
)
j∈J ∈ RJ , and D = (dij) ∈ RJ×J the matrix such that dij = wp. The optimal value

of (19) provides a lower bound on ZR because xjm ≥ 0, cj ≤ cjm, and dij ≤ dmij . Because this

new problem is symmetric across machines, the optimal solution of (19) is xjm = 1
M (this can be

37



verified easily by checking the KKT conditions of (19)). As a result,

ZR ≥ ZR =
1

2
wp

(
J2

M
+ J

)
. (20)

Combining (18) and (20) we obtain that

V ∗ ≥ 1

2
wp

J2

M
− ∆

2
w̄p̄J. (21)

The right hand side of (21) is positive when J is large enough. Finally, combining (17) and (21)

together with the fact that M/J
J→∞−−−→ 0 yields V R−V ∗

V ∗
J→∞−−−→ 0.

A.4 Proof of Theorem 5.1

Here we use the same form for the sequencing and routing penalties as in the proof of Theorem 4.1,
but we use different values for the parameters (λjm)j∈J ,m∈M in the routing penalty.

Let c =
(
wjE[pj ]

)
j∈J ∈ RJ and D = (dij) ∈ RJ×J be the matrix such that

dij =


wiE[pi] , if i = j ,

wiE[pj ] , if j ≺ i ,
wjE[pi] , if i ≺ j .

Then cm = 1
sm

c and Dm = 1
sm

D because machines are uniformly related. Set the objective function

Z̄R(x) to be

Z̄R(x) =
∑
m∈M

1

2
c′xm +

1

2
x′mDmxm.

It is easy to check that the performance of the static routing policy with routing x ∈ X satisfies

V R(x) = Z̄R(x) +
∑
m∈M

1

2
(cm − c)′xm +

1

2

∑
j∈J

wj
∑
m∈M

xjm(1− xjm)E[pjm]. (22)

Now consider the optimization problem:

Z̄R = min
x∈X

Z̄R(x). (23)

Since problem (23) is convex and all its constraints are linear, according to the KKT conditions,
there exists vectors x∗m ∈ RJ , ν∗ ∈ RJ , and µ∗m ∈ RJ such that∑

m∈M
x∗m = 1,

x∗m ≥ 0,

µ∗m ≥ 0,

Dmx
∗
m +

c

2
= ν∗ + µ∗m,

x∗m
′µ∗m = 0,

with ν∗ and µ∗m being the duals corresponding to the normalization and non-negativity constraints
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of (23), respectively. Furthermore, x∗m is an optimal solution of (23), and ν∗ and µ∗m is an optimal
solution of the dual problem of (23). By checking the KKT conditions, it is easy to verify that
the speed proportional routing x∗jm = sm/S is an optimal solution of (23). The performance V S of
speed proportional routing satisfies V S = V R(x∗). According to (22),

V S = Z̄R +
2M − S − 1

2S

∑
j∈J

wjE[pj ]. (24)

Now set ZH = E[ZH(p)], where

ZH(p) = min
x∈X

∑
m∈M

a′mxm +
1

2
x′mQmxm,

with vectors am =
(

1
2p

2
jmrjm + (λjm + pjmrjm)

(
E[pjm]− pjm

)
+ γjm

(
E[p2

jm]− p2
jm

))
j∈J ∈ RJ and

matrices Qm = diag(pm)Rmdiag(pm) ∈ RJ×J . As in SubSection 4.2, ZH is a lower bound on V ∗.
Consider the following problem:

Z̃H(p) = min
x∈X

∑
m∈M

ã′mxm +
1

2
x′mQmxm,

with vectors ãm =
(
(λjm − wj)

(
E[pjm]− pjm

)
+ 1

2cj
)
j∈J . Setting γjm = −1

2rjm, we have

ãjm − ajm =
1

2
(cj − cjm) +

1

2
rjmVar[pjm] =

1

2
wjE[pj ]

[
1 +

1

sm

(
Var[pj ]

E[pj ]2
− 1

)]
.

Therefore, a direct relation between ZH(p) and Z̃H(p) is given by

Z̃H(p)− ZH(p) ≤
∑
j∈J

max
m∈M

(ãjm − ajm) =
1

2

∑
j∈J

wjE[pj ] max
m∈M

[
1 +

1

sm

(
Var[pj ]

E[pj ]2
− 1

)]
.

Hence, letting Z̃H = E[Z̃H(p)], we have

Z̃H − ZH ≤ 1

2

∑
j∈J

wjE[pj ] max
m∈M

[
1 +

1

sm

(
Var[pj ]

E[pj ]2
− 1

)]
. (25)

Set the penalty λm to be λjm = wj . Similarly, it is easy to verify by using the KKT conditions
that the speed proportional routing x∗jm = sm/S is an optimal solution of Z̃H(p) for every sample
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path p. As a result,

E[Z̃H(p)] = E

[ ∑
m∈M

ã′mx
∗
m +

1

2
x∗m
′Qmx

∗
m

]

=
∑
m∈M

1

2
c′x∗m +

1

2
x∗m
′Dmx

∗
m +

∑
m∈M

1

2
x∗m
′(E[Qm]−Dm

)
x∗m

= Z̄R +
1

2

∑
m∈M

∑
j∈J

wjE[pj ]

sm

Var[pj ]

E[pj ]2
(
x∗jm

)2
= Z̄R +

1

2S

∑
j∈J

wjE[pj ]
Var[pj ]

E[pj ]2
.

(26)

Let ∆j , Var[pj ]/E[pj ]
2. Combining (24), (25), and (26), we have

V ∗ ≤ V S ≤ V ∗ +
1

2

∑
j∈J

wjE[pj ]

{
1

S
(2M − 1−∆j) + max

m∈M

[
1

sm

(
∆j − 1

)]}

= V ∗ +
1

2

∑
j∈J

wjE[pj ]

{(
2M − 1

S
− 1

κj

)
+

(
1

κj
− 1

S

)
∆j

}
,

where κj = sM if ∆j > 1 and κj = s1 if ∆j ≤ 1.

A.5 Proof of Proposition 5.2

We first develop some valid inequalities for all feasible starting times in deterministic scheduling
on uniformly related machines; this result is analogous to Lemma 9 in Schulz (1996).

Lemma A.1. If machines are uniformly related and processing times are deterministic and denoted
pj, then the starting times Sj of jobs for all feasible scheduling policies satisfy, for all A ⊆ J ,∑

j∈A
pjSj ≥ −

1

2

( 1

sM
− 1

S

)∑
j∈A

p2
j +

1

2S

( ∑
i,j∈A,i 6=j

pipj

)
. (27)

Proof. Let Am ⊆ A be the set of jobs processed on machine m. From Schulz et al. (1996), the
completion times for all feasible schedules on uniformly related machines satisfy

∑
j∈A

pjCj =

M∑
m=1

sm
∑
j∈Am

pj
sm

Cj ≥
M∑
m=1

sm
2

( ∑
j∈Am

( pj
sm

)2
+
( ∑
j∈Am

pj
sm

)2)

=
M∑
m=1

1

2sm

( ∑
j∈Am

p2
j +

( ∑
j∈Am

pj

)2)
, (28)
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where the inequality follows from the single machine case. Since Sj = Cj − pj
sm

for all j ∈ Am,

∑
j∈A

pjSj =
∑
j∈A

pjCj −
M∑
m=1

∑
j∈Am

p2
j

sm

(i)

≥
M∑
m=1

1

2sm

( ∑
j∈Am

p2
j +

( ∑
j∈Am

pj

)2)
−

M∑
m=1

1

sm

∑
j∈Am

p2
j

= −
M∑
m=1

1

2sm

∑
j∈Am

p2
j +

M∑
m=1

1

2sm

( ∑
j∈Am

pj

)2

(ii)

≥ −
M∑
m=1

1

2sm

∑
j∈Am

p2
j +

1

2S

(∑
j∈A

pj

)2

≥ − 1

2sM

∑
j∈A

p2
j +

1

2S

(∑
j∈A

pj

)2

= −1

2

( 1

sM
− 1

S

)∑
j∈A

p2
j +

1

2S

( ∑
i,j∈A,i 6=j

pipj

)
,

where (i) is due to (28) and (ii) follows from the inequality
∑M

m=1
x2m
sm
≥ (

∑M
m=1 xm)2∑M
m=1 sm

for any non-

negative numbers {xm}Mm=1 and {sm}Mm=1, which can be proved easily by induction.

Using Lemma A.1, we now show Proposition 5.2. Since pj and Sj are independent for any
non-anticipative policy, and pj and pi are independent for all i 6= j, taking expectations on both
sides of (27) gives∑

j∈A
E[pj ]E[Sj ] ≥ −

1

2

( 1

sM
− 1

S

)∑
j∈A

E[p2
j ] +

1

2S

( ∑
i,j∈A,i 6=j

E[pi]E[pj ]
)

=
1

2S

(∑
j∈A

E[pj ]
)2
− 1

2

( 1

sM
− 1

S

)∑
j∈A

Var[pj ]−
1

2sM

∑
j∈A

E[pj ]
2.

(29)

Using the fact that E[Cj ] ≥ E[Sj ] +
E[pj ]
s1

and (29), we obtain (7).
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B Additional Proofs and Derivations

B.1 Performance Bound on Static Routing With Dependent Jobs

Theorem B.1 (Extension of Theorem 4.1). If
Var[pjm]
E[pjm]2

≤ ∆ holds for all jobs j ∈ J and machines

m ∈M, then any static routing policy obtained from an optimal solution of (2) satisfies

V ∗ ≤ V R ≤ V ∗ +
(M − 1

2M
+

∆

2

)∑
j∈J

wj max
m∈M

E[pjm] +
∑
j∈J

αjwj

+
(

2 +
√

∆M
)(∑

j∈J
max
m∈M

E[pjm]
)(∑

j∈J
αj max

m∈M
rjm

)
+

1

2

∑
j∈J

βj max
m∈M

rjm.

(1)

Proof. In the proof we use similar penalties as in Section 4.2 with the same parameters λjm and
γjm as in Proposition 4.5. We first state and prove Lemma B.2, which bounds the parameters λjm
in the routing penalty.

Lemma B.2. Let λjm = ν∗j /E[pjm] + 1
2wj with ν∗j being an optimal Lagrange multiplier of the

assignment constraint
∑

m∈M xjm = 1 in (2). We have the following inequalities

0 ≤ λjm ≤ wj + rjm
∑
i∈J

E[pim] . (2)

Proof. It suffices to show any optimal Lagrange multiplier ν∗j of the assignment constraint
∑

m∈M xjm =
1 satisfies

0 ≤ ν∗j ≤
1

2
wjE[pjm] + rjmE[pjm]

∑
i∈J

E[pim], ∀m ∈M.

To show this, let x∗ = (x∗jm)j∈J ,m∈M ∈ RJ×M be an optimal solution and µ∗jm ≥ 0 be an optimal
Lagrange multiplier of the non-negativity constraint xjm ≥ 0 in (2). By the KKT conditions, for
all jobs j ∈ J and machines m ∈M we have

1

2
wjE[pjm] +

∑
i∈J

dmjix
∗
im = ν∗j + µ∗jm, (3)

where dmji = min(rim, rjm)E[pjm]E[pim] is the (j, i)-th element in Dm as is defined in Lemma 3.1.
We first show ν∗j ≥ 0. If not, from (3) we have µ∗jm > 0 for all m ∈ M. Then according to

the complementary slackness we have x∗jm = 0 for all m ∈ M. This contradicts the assignment
constraint, which requires

∑
m∈M x∗jm = 1.

Next, since µ∗jm ≥ 0 for all m ∈M, from (3) we have for all m ∈M,

ν∗j ≤
1

2
wjE[pjm] +

∑
i∈J

dmjix
∗
im ≤

1

2
wjE[pjm] + rjmE[pjm]

∑
i∈J

E[pim] ,

because x∗im ≤ 1 and dmji ≤ rjmE[pjm]E[pim]. The result follows.

We now prove Theorem B.1. We will restrict attention to non-anticipative policies where idling
all machines at the same time is not allowed. This idling constraint is trivially satisfied by the
optimal non-anticipative policy, and it allows us to bound the starting times of each job in the
perfect information problem.
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First, note that for the upper bound on V R, Proposition 4.3 still holds. To derive a lower bound
on V ∗ using a penalized perfect information relaxation, we define the sequencing penalty YS to be

YS ,
∑
j∈J

∑
m∈M

rjmS
π
jm

(
pjm − E[pjm|FπSπjm ]

)
, (4)

and the routing penalty YR to be

YR ,
∑
j∈J

∑
m∈M

xπjm

[
λjm

(
E[pjm|FπSπjm ]− pjm

)
+ γjm

(
E[p2jm|FπSπjm ]− p2jm

)]
. (5)

We set the parameters (λjm)j∈J ,m∈M and (γjm)j∈J ,m∈M as in the statement of Proposition 4.5.
Since Sπjm is measurable with respect to FπSπjm for all non-anticipative policies, we obtain by the

law of total expectation that the sequencing penalty YS is dual feasible. An analogous argument
shows the routing penalty YR is also dual feasible, as xπjm is measurable with respect to FπSπjm for

all non-anticipative policies. Let

V H(p) = min
x∈X

{∑
j∈J

wjCj + YS + YR

}
,

be the penalized perfect information relaxation problem for sample path p ∈ RJ×M . We have

V H , E[V H(p)] ≤ V ∗ , (6)

is a lower bound on V ∗, because the penalty YS + YR is dual feasible.
Next, define the penalties as in Section 4:

ỸS ,
∑
j∈J

∑
m∈M

rjmS
π
jm

(
pjm − E[pjm]

)
,

ỸR ,
∑
j∈J

∑
m∈M

xπjm

[
λjm

(
E[pjm]− pjm

)
+ γjm

(
E[p2jm]− p2jm

)]
,

and let Ṽ H(p) be the perfect information problem with these penalties:

Ṽ H(p) = min
x∈X

{∑
j∈J

wjCj + ỸS + ỸR

}
.

We have that
V H(p) ≥ Ṽ H(p) + min

x∈X

{
YS + YR − ỸS − ỸR

}
. (7)

Using the assumption of limited dependence (10) and (11), we can bound the difference in
penalties as follows:

YS + YR − ỸS − ỸR ≥ −
∑
j∈J

αj
∑
m∈M

rjmSjm −
∑
j∈J

αj
∑
m∈M

xjm|λjm| −
∑
j∈J

βj
∑
m∈M

xjm|γjm|.

We next bound each of these terms. For the first term, we use the fact that the start time of
every job j ∈ J must satisfy Sj ≤ Cj ≤

∑
i∈J maxm∈M pim because idling all machines at the

same time is not allowed. Moreover, because each job is processed by one machine we have that
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∑
m∈M rjmSjm ≤

(
maxm∈M rjm

)
Sj . Therefore,∑

j∈J
αj
∑
m∈M

rjmSjm ≤
(∑
j∈J

max
m∈M

pjm

)(∑
j∈J

αj max
m∈M

rjm

)
.

For the second term, the assignment constraint and Lemma B.2 imply that∑
j∈J

αj
∑
m∈M

xjm|λjm| ≤
∑
j∈J

αjwj +
(∑
j∈J

max
m∈M

E[pjm]
)(∑

j∈J
αj max

m∈M
rjm

)
.

For the third term, we use γjm = −1
2rjm and the assignment constraint to obtain that∑

j∈J
βj
∑
m∈M

xjm|γjm| ≤
1

2

∑
j∈J

βj max
m∈M

rjm .

Taking expectations on both sides of (7) gives

V H ≥ E
[
Ṽ H(p)

]
−
∑
j∈J

αjwj −
(

2 +
√

∆M
)(∑

j∈J
max
m∈M

E[pjm]
)(∑

j∈J
αj max

m∈M
rjm

)
− 1

2

∑
j∈J

βj max
m∈M

rjm , (8)

because

E
[

max
m∈M

pjm

]
≤ max

m∈M
E[pjm] +M1/2 max

m∈M

(
Var[pjm]

)1/2 ≤ (1 +
√

∆M
)

max
m∈M

E[pjm] ,

due to Devroye (1979) and Var[pjm] ≤ ∆E[pjm]2 for all jobs j ∈ J and machines m ∈ M. The
result follows from using Proposition 4.3 to bound V R from above, Proposition 4.5 to bound Ṽ H(p)
from below, (6), and (8).

B.2 Additional Details on Example 6.1

Because weights are one, we can express V A as

V A = E

[
J/2∑
i=1

C2i−1︸ ︷︷ ︸
(a)

+

J/2∑
i=1

C2i1{p2i−1=0}︸ ︷︷ ︸
(b)

+

J/2∑
i=1

C2i1{p2i−1=1}︸ ︷︷ ︸
(c)

]
,

where (a) represents the completion time of odd-numbered jobs, (b) represents the completion time
of even-numbered jobs processed immediately, and (c) represents the completion time of even-
numbered jobs delayed to the end of sequence. The odd-numbered job 2i−1 has to wait for all jobs
with j < 2i − 1 to either complete processing on the machine or transfer towards the end of the
sequence. Let ti be the total processing time of job pair (p2i−1, p2i) excluding the time to process
job 2i if delayed. We have

E[ti] = E[p2i−1] + E[p2i1{p2i−1 = 0}] =
1

2
· 1 +

1

2
· (1− 2qi) = 1− qi.
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Thus,

E[(a)] =

J/2∑
i=1

(
E[p2i−1] +

∑
j<i

E[tj ]
)

=

J/2∑
i=1

(1

2
+
∑
j<i

(1− qj)
)

=
1

8
J2 −

J
2∑
i=1

∑
j<i

qj .

Similar, we have

E[(b)] =

J/2∑
i=1

P(p2i−1 = 0)
(
E[p2i|p2i−1 = 0] +

∑
j<i

E[tj ]
)

=

J/2∑
i=1

1

2

(
(1− 2qi) +

∑
j<i

(1− qj)
)

=
1

16
J2 +

1

8
J − 1

2

J
2∑
i=1

∑
j<i

qj −

J
2∑
i=1

qi.

To calculate (c), we first calculate the expectation conditioning on the realized processing times

of all odd-numbered jobs {p2i−1}
J
2
i=1, then we take expectation over these processing times. We

let N =
∑J

2
i=1 p2i−1 be the number of odd-numbered jobs with realized processing times of one.

Altogether N even-numbered jobs will be moved towards the end of the sequence, because job 2i

is delayed if p2i−1 = 1. Because the machine begins processing these jobs at time N +
∑J

2
i=1(1 −

p2i−1)E[p2i|p2i−1 = 0], we have that

E
[
(c) | {p2i−1}

J
2
i=1

]
= N

(
N +

J
2∑
i=1

(1− p2i−1)E[p2i|p2i−1 = 0]
)

+

J
2∑
i=1

∑
j≤i

p2i−1p2j−1E[p2j |p2j−1 = 1]

= N
(
N +

J
2∑
i=1

(1− p2i−1)(1− 2qi)
)

+

J
2∑
i=1

∑
j≤i

p2i−1p2j−12qj .

Thus, we obtain by taking expectations over {p2i−1}
J
2
i=1

E[(c)] =
1

8
J2 −

(J
2
− 2
) J

2∑
i=1

qi +

J
2∑
i=1

∑
j<i

qj +
1

2

J
2∑
i=1

∑
j>i

qj

≤ 1

8
J2 −

(J
2
− 2
) J

2∑
i=1

qi +
3

2

J
2∑
i=1

∑
j<i

qj ,

where the inequality is because qi are sequenced in decreasing order.
Combining (a), (b), and (c) yields

V A ≤ 5

16
J2 +

1

8
J +

(
1− J

2

) J
2∑
i=1

qi.

45



C Dynamic Programming Formulation

The optimal policy of the scheduling problem described in Section 2 can be obtained by solving
Bellman’s Equation, using backward induction. For sake of simplicity of presentation, we assume
all random variables pjm take only positive integral values, that is, P{pjm ∈ N} = 1. Then we can
further assume without loss of generality that jobs can only be started at integral points in time
t ∈ N.

We define the state to be (W,P, `), where W ⊆ J is the subset of jobs waiting for service, and
P ⊆ J ×M is the subset of job-machine pairs under process. ` = (`j)j∈J ∈ RJ is defined as
follows: if job j is currently under process on some machine, then `j is the elapsed processing time
of job j; if job j is waiting for service, then `j = 0; otherwise if job j is completed, `j can take an
arbitrary value.

To describe Bellman’s Equation, we introduce some helpful notation. Suppose P ⊆ J ×M is
a subset of job-machine pairs. We define two operations J (·) and M(·) on P such that J (P ) and
M(P ) give the jobs and machines under process in the job-machine pairs in P , respectively. Also,
for each set A ⊆ J , we define the vector IA = (IjA)j∈J ∈ {0, 1}J to be IjA = 1 if j ∈ A, and IjA = 0
otherwise.

Let V (W,P, `) be the cost-to-go function when the state is (W,P, `). If W = ∅, set V (W,P, `) =∑
(j,m)∈P wjE [pjm − lj |pjm > lj ]. If W 6= ∅, then the action set is

A(W,P ) = {P̂ ⊆W ×M\M(P ) : if (j,m), (j′,m′) ∈ P̂ , then j 6= j′and m 6= m′}.

That is, A(W,P ) is the set of all possible job-machine pairs that can be assigned when jobs in W
are waiting and job-machine pairs in P are under process. Thus, if P̂ ∈ A(W,P ) is chosen, the
decision maker will assign job j to currently idle machine m for each job-machine pair (j,m) ∈ P̂ .

In addition, define F ⊆ P to be the random set of job-machine pairs that are currently under
process and will be completed by the beginning of next stage, i.e., for each set F ⊆ P ,

P{F = F |P, `} =
∏

(j,m)∈P\F

P{pjm > `j + 1|pjm > `j}
∏

(j,m)∈F

P{pjm = `j + 1|pjm > `j}.

Then the Bellman Equation can be written as:

V (W,P, `) = min
P̂∈A(W,P )

{∑
j∈J (P )∪W

wj + EF|P∪P̂ ,`

[
V

(
W \ J (P̂ ), {P ∪ P̂} \ F , `+ I

J
(
{P∪P̂}\F

))]} .
The optimal performance is given by V ∗ = V (J ,∅,0).

D Binary Linear Programming Formulation for Optimal Static Routing

In this section, we provide an approach to calculating an exact solution to optimization problem
(1) using 0-1 integer programming. The approach may be viable when the number of jobs is not
large.

We can write problem (1) in matrix form as

min
x∈X

∑
m∈M

c′mxm +
1

2
x′mD̃mxm, (9)
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where cm = (wjE[pjm])j∈J ∈ RJ , and D̃m = (d̃mij ) ∈ RJ×J is the matrix such that

d̃mij =


0 i = j,

wiE[pjm] j ≺m i,
wjE[pim] i ≺m j.

We claim that the optimal value of problem (9) does not change if we replace the non-negative
constraint xjm ≥ 0 with the binary constraint xjm ∈ {0, 1} for each job-machine pair. To see this,
suppose x is an optimal solution for (9), then using the method of conditional probabilities we can
derandomize x to a feasible binary solution whose performance cannot be any worse. On the other
hand, every feasible binary solution can not be any better than x, because x is an optimal solution
to (9).

Define new binary variables ymij , ximxjm. Then the objective of problem (9) is equivalent to∑
m∈M

∑
j∈J

cjmxjm +
∑
m∈M

∑
i<j∈J

ymij d̃
m
ij .

We can guarantee that ymij = ximxjm using the following constraints:

ymij ≤ xjm,
ymij ≤ xim,
ymij ≥ xjm + xim − 1,

ymij ∈ {0, 1}.

As a result, problem (9) is equivalent to

minimize
xjm,ymij

∑
m∈M

∑
j∈J

cjmxjm +
∑
m∈M

∑
i<j∈J

ymij d̃
m
ij

subject to
∑
m∈M

xm = 1,

ymij ≤ xjm,
ymij ≤ xim,
ymij ≥ xjm + xim − 1,

xjm ∈ {0, 1},
ymij ∈ {0, 1},

which is a 0-1 integer programming problem.
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