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Abstract

Motivated by applications in shared vehicle systems, we study dynamic pricing of resources
that relocate over a network of locations. Customers with private willingness-to-pay sequentially
request to relocate a resource from one location to another, and a revenue-maximizing service
provider sets a price for each request. This problem can be formulated as an infinite horizon
stochastic dynamic program, but is quite difficult to solve, as optimal pricing policies may
depend on the locations of all resources in the network. We first focus on networks with a hub-
and-spoke structure, and we develop a dynamic pricing policy and a performance bound based
on a Lagrangian relaxation. This relaxation decomposes the problem over spokes and is thus far
easier to solve than the original problem. We analyze the performance of the Lagrangian-based
policy and focus on a supply-constrained large network regime in which the number of spokes
(n) and the number of resources grow at the same rate. We show that the Lagrangian policy
loses no more than O

(√
lnn/n

)
in performance compared to an optimal policy, thus implying

asymptotic optimality as n grows large. We also show that no static policy is asymptotically
optimal in the large network regime. Finally, we extend the Lagrangian relaxation to provide
upper bounds and policies to general networks with multiple, interconnected hubs and spoke-
to-spoke connections, and to incorporate relocation times. We also examine the performance
of the Lagrangian policy and the Lagrangian relaxation bound on some numerical examples,
including examples based on data from RideAustin.

Subject classifications: Dynamic pricing, resource relocation, hub-and-spoke networks, Lagrangian
relaxations, asymptotic optimality.



1 Introduction

Motivated by the growing popularity of shared vehicle systems (e.g., “ride-sharing” or “ride-hailing”

platforms such as Lyft and Uber, as well as many bicycle-sharing platforms), there has been an

increased study of algorithms for efficiently managing resources that circulate over a network of

locations. A number of other applications related to transportation networks or logistics also involve

resources that change locations over time. In this paper, we study a dynamic pricing problem faced

by a service provider managing a finite number of resources over a potentially large network.

Customers (e.g., riders) with a private willingness-to-pay sequentially arrive with known rates and

request to relocate one resource (e.g., driver) from an origin location to a destination location.

When a request arrives, the service provider selects a price based on the origin and destination,

as well as potentially the location (i.e., “state”) of all resources in the system. The request is

fulfilled if and only if the origin location contains resources and the customer’s private value is at

least equal to the selected price; a fulfilled request generates revenue (equal to the selected price)

for the provider and leads to one unit of resource relocating from the origin to the destination. If

the origin has no resource, the request is lost. The problem is to find a dynamic pricing policy

that maximizes the provider’s average revenue over an infinite horizon. With many locations, this

problem is difficult to solve, as optimal pricing policies may depend on the locations of all resources

in the system.

The model we study closely follows the models studied in Waserhole and Jost (2016) and

Banerjee et al. (2016): both of these papers are motivated by ride-sharing and study the role

that pricing plays in controlling the flow of resources while attempting to maximize a particular

objective (e.g., revenue, throughput, or social welfare). The key methodology in Waserhole and

Jost (2016) and Banerjee et al. (2016) is the use of fluid relaxations that provide upper bounds

on the performance of an optimal pricing policy and lead to a static pricing policy (i.e., prices

depend on the origin-destination pairs but not on the number of resources across the network).

Both Waserhole and Jost (2016) and Banerjee et al. (2016) show that the fluid-based static policy

is within a factor of m
m+n−1 of the fluid upper bound, where m is the number of resources and n

is the number of locations. This result holds for general network structures and implies that the

fluid-based static policy is asymptotically optimal in the large supply regime where the number of

resources grows faster than the number of locations.

Although the large supply regime may be appropriate when resources are concentrated within a

few locations (e.g., compact cities with high population density), in this paper we consider instead
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a setting when resources are distributed over a large number of locations (e.g., sprawling cities

with many neighborhoods and heterogeneous population density). This motivates us to study a

supply-constrained large network regime in which the total supply of resources grows at the same

rate as the number of locations. In Section 2 we show that when the total arrival rate of requests

grows proportionally with n, resource utilization (measured in average relocations per resource per

unit time - e.g., rides per driver per hour in ride-sharing) is bounded from below by a constant in

the large network regime we consider.1 Thus, resources are ensured to be “frequently” in use, and

the regime we consider can be relevant in some practical settings.

The large network regime also appears to require significantly different policies and analysis than

the large supply regime. In particular, in the large supply regime, the system behavior becomes

essentially deterministic as the network becomes congested in the large supply limit, and thus

fluid relaxations provide a very good approximation and fluid-based static policies provide a good

performance. In contrast, when the number of resources and size of the network grow at the same

rate, the limiting behavior of the system retains a stochastic character, and it is essential to adjust

prices dynamically based on the locations of resources to attain good performance.

Whereas fluid relaxations have been shown to perform well in the large supply regime for general

network structures, our initial theoretical analysis is specialized to networks with a hub-and-spoke

structure (see Figure 1) and a large number of spokes. Hub-and-spoke network structures are

popular in the transportation industry (perhaps most famously by airlines) because they minimize

the number of routes connecting every location. In shared vehicle systems, a hub-and-spoke network

provides a reasonable approximation to a metropolitan area in which commuters travel back and

forth from suburbs (the spokes) to a densely populated urban core (the hub). In addition to the

transportation industry, hub-and-spoke structures are used widely in communications and logistics

(see e.g., Pirkul and Schilling 1998 and references therein).

Our approach involves a Lagrangian relaxation of the constraint that the number of resources

in the hub be non-negative. With this relaxation, the problem simplifies considerably in that

the dynamic pricing problem decouples across spokes. With the optimal Lagrange multiplier, the

Lagrangian relaxation has the interpretation of ensuring that the hub has non-negative number

of resources in expectation. A key innovation in our approach is to then consider a perturbed

1This is consistent with findings in the popular press on how companies like Lyft and Uber may “optimize” the
total number of drivers: for a given urban area, there may be a “target” number of requests per driver per hour
on average. See, e.g., https://www.nytimes.com/2018/08/10/upshot/uber-lyft-taxi-ideal-number-per-city.

html. Moreover, large cities like NYC are considering capping the number of drivers on road. See, e.g., https:

//www.nytimes.com/2018/08/08/nyregion/uber-vote-city-council-cap.html.

2

https://www.nytimes.com/2018/08/10/upshot/uber-lyft-taxi-ideal-number-per-city.html
https://www.nytimes.com/2018/08/10/upshot/uber-lyft-taxi-ideal-number-per-city.html
https://www.nytimes.com/2018/08/08/nyregion/uber-vote-city-council-cap.html
https://www.nytimes.com/2018/08/08/nyregion/uber-vote-city-council-cap.html


Lagrangian relaxation that ensures that some relatively small amount δ = o(n) of resources remains

in the hub in expectation. We develop a dynamic pricing policy based on a dual formulation of

the perturbed Lagrangian relaxation; this policy involves precise, state-dependent control of the

resources at each spoke. We show that the performance of this policy in the original (i.e., fully

constrained) system is “close” to the performance in the relaxation by relating the performance

gap to the probability that the hub is depleted in the original system. Finally, by choosing δ as a

particular function of n and analyzing the properties of the stationary distributions of resources in

the spokes, we show via concentration inequalities that the hub depletion probability is small; this

result implies that the Lagrangian-based policy is asymptotically optimal for large hub-and-spoke

networks in which the number of spokes n and resources m grow at the same rate.

We then extend our policies and performance bounds to general networks with multiple, in-

terconnected hubs, and spoke-to-spoke connections. For systems with multiple hubs, we further

dualize the flow balance constraint for each hub, i.e., the constraint that, for each hub, the average

inflow of resources is equal to the average outflow of resources: this ensures the in-flow and out-flow

of each hub is balanced in expectation (with optimal Lagrange multipliers). To handle spoke-to-

spoke connections, we further dualize the relocation constraint associated with these requests. In

our base model, we assume relocations occur instantaneously. We also develop a tractable approach

to incorporating relocation times into the policies and bounds. In this paper, we restrict most of the

theoretical analysis to single-hub networks with no spoke-to-spoke transitions, and instantaneous

relocations (we also analyze multiple hub systems under some restrictive assumptions on the hubs).

Extending the analysis of Lagrangian-based policies to general networks remains an open challenge.

Although the fluid-based static policy is easy to implement and provides provably good perfor-

mance for general networks, we show that the Lagrangian relaxations we consider provide tighter

performance bounds, and no static policy is asymptotically optimal in the large network regime we

consider. In some sense, the Lagrangian policy can be viewed as a refinement of the fluid-based

static policy in which we price dynamically for requests involving a node with fewer resources (i.e.,

a spoke), but retain static pricing for requests in which both the origin and destination tend to have

a large number of resources (i.e., hubs). Our dynamic pricing policies may depend on the number

of resources either at the origin or the destination location. When all the nodes in the network

are treated as hubs, the Lagrangian relaxation and policy are identical to the fluid relaxation and

the fluid-based static policy. In Section 7.2, we show the Lagrangian policy performs well and out-

performs both the fluid-based static policy and another Lagrangian-based static policy in general

networks using a model calibrated on empirical data from RideAustin.
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The paper is organized as follows. Section 1.1 reviews some related work. In Section 2 we

formulate the problem, and in Section 3 we discuss the Lagrangian relaxation and corresponding

Lagrangian policies. Section 4 presents the main results on performance analysis and an overview of

the key steps of the proof. In Section 5 we compare to fluid relaxations and the optimal static poli-

cies, and provide an analytical example showing that the optimal static policy is strictly suboptimal

in the large network regime we consider. Section 6 extends the Lagrangian relaxation and policy

to more general network structures with multiple hubs, spoke-to-spoke connections, and nonzero

relocation times. In Section 7 we evaluate the performance of the Lagrangian policies on single hub

synthetic examples and a realistic example based on data from RideAustin. Section 8 concludes.

The main proofs are in Appendix A; additional discussions and derivations are in Appendices B

through G.

1.1 Related Literature

In addition to Waserhole and Jost (2016) and Banerjee et al. (2016), a number of other researchers

have studied stochastic control problems involving relocating resources. Braverman et al. (2016)

also study ride-sharing problems and focus on how to optimally reposition resources after each

service to under-supplied locations to better meet future demands; they consider both arrival rates

and number of resources growing large for a fixed network of locations, but incorporate positive

transition times. Their approach also involves the study of fluid limits: they show the fluid-based

upper bounds and their induced static policies are asymptotically optimal in the heavy traffic

limit, whereas we show these fail to be asymptotically optimal in the large network regime we

study. Ozkan and Ward (2017) consider instead the assignment problem of matching requests

with nearby resources and show that a fluid-based static (matching) policy achieves asymptotic

optimality in the heavy traffic regime. Banerjee et al. (2018) consider a similar assignment problem

and develop a state-dependent assignment policy that achieves the optimal decay rate of demand-

dropping probability in the large supply regime. Kanoria and Qian (2019) study joint matching

and pricing and develop a state-dependent assignment policy that does not require prior knowledge

of the demand arrival rates and is asymptotically optimal in the large supply regime. Variations of

these models involving equilibrium considerations (e.g., strategic drivers in ride-sharing networks)

have also recently been studied: Bimpikis et al. (2016) study spatial pricing in ride-sharing networks

with strategic drivers operating in an infinite-horizon fluid model2, and Besbes et al. (2018) study

2Although Bimpikis et al. (2016) focus on spatial pricing with strategic drivers, they too study networks related
to hub-and-spoke networks; they refer to these as “star” networks. Bimpikis et al. (2016) argue that spatial dis-
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spatial pricing in a static equilibrium model with demand-supply imbalances. Finally, Besbes et al.

(2019) study the problem of determining the optimal number of drivers in ride-hailing systems to

balance service utilization and customer waiting times while accounting for pickup and travel times,

under a heavy traffic regime.

Other researchers have studied similar relocation problems for managing logistics and trans-

portation networks. For example, Adelman (2007) develops a price-directed control policy to man-

age a network of shipping containers. This policy is based on approximate dynamic programming

and the problem studied involves accept-or-reject decisions for requests (rather than a continuum

of prices). A number of other papers (e.g., Du and Hall 1997; George and Xia 2011; Song and

Carter 2008) consider designing the optimal fleet size and/or redistribution policy to control the

flow of equipment from over-supplied locations to under-supplied locations. Du and Hall (1997)

and Song and Carter (2008) also consider hub-and-spoke networks and a decomposition over spokes

for equipment and vehicle redistribution problems; these papers do not consider Lagrangian penal-

ties in the relaxation. Several of these papers incorporate other realistic features of the problem

(e.g., nonzero transit times for relocations), but none of these papers provide theoretical analysis

or guarantees on the performance of the various heuristic policies studied. Finally, a number of

researchers have used Lagrangian relaxations for variations of hub-and-spoke design problems. For

example, Pirkul and Schilling (1998) and An et al. (2015) consider static, discrete optimization

problems aimed at optimizing the location of multiple hubs given the possibility that some hubs

may fail.

The resource relocation problem we study can be viewed as a control problem for a closed

queueing network. For example, Banerjee et al. (2016) use the Gordon-Newell theorem (Gordon

and Newell 1967) to analyze the stationary distribution of their static pricing policy, and George and

Xia (2011) use results from the study of BCMP networks (Baskett et al. 1975) to analyze optimal

fleet sizing problems. In general, fluid limits are a widely used tool in the study of closed queueing

networks (see, e.g., Harrison and Wein 1990 and Kumar and Kumar 1996). Typically, an optimal

solution to the fluid relaxation problem can be implemented in the original problem as a static

policy and proven to be asymptotically optimal in a regime where the number of resources grows

faster than the number of locations. These static policies often result in stationary distributions

that are separable across the network (i.e., the joint distribution of the system has a product form

across nodes in the networks); this separability need not hold in the state-dependent pricing policies

crimination in pricing in their setting confers more profits in networks with demand that is less “balanced,” with
hub-and-spoke (or star) networks being a prominent example of this.
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we study.

For hub-and-spoke networks, the dynamic pricing problem can also be viewed as a special

case of a weakly coupled stochastic dynamic program (DP), where the linking constraint is the

capacity constraint that the total number of resources in the spokes can not exceed the total

number of resources m (or equivalently, the number of resources in the hub must be non-negative).

Hawkins (2003), Adelman and Mersereau (2008) and Bertsimas and Mǐsić (2016) study DPs that

are linked through global resource constraints and they all consider Lagrangian relaxations of

the linking constraints. Lagrangian relaxations of stochastic DPs have also been used in many

applications including network revenue management (e.g., Talluri and van Ryzin 1998; Topaloglu

2009; Kunnumkal and Talluri 2016), inventory allocation (e.g., Marklund and Rosling 2012; Miao

et al. 2020), marketing (e.g., Bertsimas and Mersereau 2007 and Caro and Gallien 2007), and

restless bandit problems (e.g, Brown and Smith 2017, Hu and Frazier 2017, and Zayas-Cabán et al.

2019).

1.2 Notation and Terminology

We let N denote the set of nonnegative integers and N+ the set of strictly positive integers. For any

x, y ∈ R, we let x∧ y = min{x, y} denote the minimum of x and y. For any a, b ∈ N with a ≤ b, we

let [a : b] =
{
a, a+ 1, . . . , b− 1, b

}
denote a sequence of integers starting from a and ending with b

and we denote [n] = [1 : n] for any n ∈ N+. We let ei denote a vector with the i-th element being

one and all the other elements being zeros; the dimension of ei is clear from the context.

2 Problem Formulation

We study a dynamic pricing problem with m resources relocating in a network. We consider an infi-

nite horizon continuous-time model. Customers with private willingness-to-pay sequentially request

to relocate one resource from one location to another. We assume relocations are instantaneous

and after each relocation the resource remains in the destination until relocated again by another

request. Requests of each type (i, j) — i.e., those requests to relocate one resource from location

i to location j — arrive following independent Poisson processes with rates ηij . We focus on the

embedded discrete-time model where in each time period a request arrives and with probability

qij , ηij∑
k,l ηkl

the request type is (i, j), independent of requests in earlier time periods.3 We can

3The continuous-time model and its embedded discrete-time model are equivalent because, under any station-
ary policy, the limiting distributions of the continuous-time and discrete-time Markov chains converge to the same
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describe the network topology by a directed graph with each node representing a location and

there is an edge from location i to location j if qij > 0. Throughout the paper, we assume that the

network topology is strongly connected.

Upon the arrival of each request, a service provider selects a price p based on the type of the

request and the locations of the resources. If the number of resources at the origin location is

positive and the private value for the request is greater than the price, the request is fulfilled, the

service provider earns p, and one resource transits from the origin to the destination; otherwise the

request is lost. If there is no resource in the origin, the service provider simply drops the request.

The problem is to find a feasible policy that maximizes the average revenue per time period over

an infinite horizon.

Throughout the paper, we assume that private values are independent. Moreover, the private

value for a request of type (i, j) follows a known continuous cumulative distribution Fij . Thus

given a price p and assuming that the origin location contains resources, the probability that a

request of type (i, j) is fulfilled is dij(p) = 1− Fij(p). We let Gij(d) , sup
{
p : 1− Fij(p) ≥ d

}
be

the generalized inverse demand function for d ∈ [0, 1]. The service provider equivalently selects a

demand level d in the interval [0, 1] every time a request arrives and charges the price Gij(d). We

let rij(d) = d · Gij(d) be the one-period expected revenue functions, and we assume the following

properties on these functions.

Assumption 2.1. For all request types (i, j), the one-period expected revenues rij(d) = d·Gij(d) are

strictly concave in the interval [0, 1] with rij(0) = 0; the maximum values are uniformly bounded

by some constant r̄ > 0, i.e., maxd∈[0,1] rij(d) ≤ r̄; the derivatives are uniformly bounded by some

ω̄ > 0, i.e., maxd∈[0,1]

∣∣r′ij(d)
∣∣ ≤ ω̄; and the unique maximum points d∗ij , argmaxd∈[0,1]rij(d) lie in

the interior of interval [0, 1].

Strict concavity simplifies our analysis, as this leads to unique solutions of the resulting op-

timization problems and rules out optimality of randomized prices (e.g., mixed policies). The

assumption that the maximizers of the revenue functions are strictly interior is helpful in ensuring

the Markov chains under various policies we study have helpful properties (e.g., irreducibility).

2.1 Large Network Regime

We consider a large network regime in which the number of resources m scales at the same rate as

the number of locations. When the demand rate per location is constant, this scaling of resources

stationary distribution (which may depend on the initial state if the Markov chain has multiple recurrent classes).
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ensures that resources are in use “frequently” under any pricing policy, in a sense we now make

precise.

Let n denote the number of locations and π denote any feasible policy; formally, π is a mapping

from the state – which is the origin and destination of the current request as well as the vector

x = (xi)i∈[n] ∈ Nn, describing how many resources are in each location – to a demand level

d ∈ [0, 1]. The next result bounds the resource utilization of a policy in terms of the average

revenue per period.

Proposition 2.1. Suppose the total arrival rate satisfies ηn ≤
∑

i,j ηij ≤ η̄n for some η, η̄ > 0. For

any policy π, let V π denote the average revenue per period (i.e., request) using π. Then resource

utilization as measured in the average number of relocations (e.g., rides) per resource per unit time4,

which we denote by Φπ, satisfies
ηV π

ω̄
· n
m
≤ Φπ ≤ η̄ · n

m
.

We prove the resource utilization inequalities under an assumption on the total arrival rate,

which can be justified when locations have a constant demand for relocations (for example, when

each location covers a geographical area with a similar population) and we consider increasing the

number of locations (for example, by extending the geographical area of coverage). This assumption

implies that the expected time between requests is on the order of 1/n. We prove Proposition 2.1

in Appendix A.1 and note that Proposition 2.1 also holds with relocation times (see the proof for

a justification of this).

When m grows at the same rate as n, Proposition 2.1 implies that the resource utilization is

bounded from below by a positive constant for any pricing policy π (under the mild condition

that V π is bounded from below by a positive constant). In this sense, resources are ensured to be

“frequently” in use, irrespective of the size of the system. In the remainder of this paper we focus

on the large network regime and aim to develop policies that perform well in this regime. We begin

with networks with a hub-and-spoke structure; Section 6 discusses how to extend our approach to

more general networks.

2.2 Hub-and-Spoke Networks: Optimal Control

We first focus on a hub-and-spoke network as illustrated in Figure 1. There is one hub at the

center denoted by location 0 and n spokes around the hub denoted by locations 1 to n. In this

4By “time” here we refer to the underlying continuous time model. For example, in ride-sharing, how many rides
per hour is completed by each driver, on average.
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Figure 1: A hub-and-spoke network with one hub (grey) and n spokes (white).

model, the only requests are between the hub and a particular spoke. The request type is (i, 0)

with probability qi0 > 0 and is (0, i) with probability q0i > 0 for each spoke i. We let qi = qi0 + q0i

be the probability that spoke i is involved in a request; these probabilities qi sum up to one.

We let xi denote the number of resources in location i for i ∈ [0 :n] and let vector x = (xi)i∈[n] ∈

Nn denote the number of resources in each of the spokes. The number of resources in the hub is

uniquely determined by the number of resources in the spokes because x0 +
∑

i∈[n] xi = m. Thus

the set X =
{
x = (xi)i∈[n] ∈ Nn :

∑
i∈[n] xi ≤ m

}
incorporates all feasible states of the resources.

We can represent the system state by a tuple (x, s), with x ∈ X being the state of resources and

s being the type of the arriving request (i.e., either (i, 0) or (0, i) for some i ∈ [n]). Sometimes we

will also represent the system state by (x, i, 0) or (x, 0, i) given that the request type is either (i, 0)

or (0, i). The average revenue optimization problem is

V OPT = max
π∈Π

lim
T→∞

1

T
· E

{
T∑
t=1

∑
i∈[n]

(
yi0,t · ri0

(
dπi0,t

)
+ y0i,t · r0i

(
dπ0i,t

))}

s.t. xπi,t+1 = xπi,t − yi0,t · 1
[
ξt ≤ dπi0,t

]
+ y0i,t · 1

[
ξt ≤ dπ0i,t

]
, ∀ i ∈ [n], t ≥ 1,

xπi,t ≥ 0, ∀ i ∈ [0 : n], t ≥ 1,∑
i∈[0:n]

xπi,t = m, ∀ t ≥ 1,

(1)

where Π is the set of all non-anticipative policies (that is, policies that can only depend on the

observed history), dπij,t is the demand level employed by policy π at time t when the request type

is (i, j), xπi,t is the resource level of location i at the beginning of time t under policy π, yij,t is a

binary random variable with yij,t = 1 if the request type is (i, j) at time t, and {ξt}t≥1 is a sequence
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of independent and identically distributed random variables following a uniform distribution with

support [0, 1]. The first constraint models the dynamics of the number of resources in the spokes;

the events {ξt ≤ dπi0,t} and {ξt ≤ dπ0i,t} capture whether the request is fulfilled and a resource

relocates from a spoke to the hub and the hub to a spoke, respectively. The second constraint

ensures that locations have non-negative amount of resources while the third constraint determines

the number of resources in the hub. We let V OPT be the optimal value of (1). In Proposition 2.2

we show V OPT does not depend on the initial state of the system and provide Bellman equations

for the optimal control problem.

Proposition 2.2. The optimal value V OPT of (1) does not depend on the initial state of the system.

Moreover, V OPT together with the differential value functions v(x, s) for each state (x, s) satisfies

V OPT + v(x, 0, i) = max
d∈[0,1∧x0]

{
r0i(d) + d · v(x + ei) + (1− d) · v(x)

}
,

V OPT + v(x, i, 0) = max
d∈[0,1∧xi]

{
ri0(d) + d · v(x− ei) + (1− d) · v(x)

}
,

(2)

for all x ∈ X and i ∈ [n], where v(x) = Es
[
v(x, s)

]
=
∑

i∈[n]

{
q0i · v(x, 0, i) + qi0 · v(x, i, 0)

}
are the

average differential value functions over request types. Finally, an optimal stationary policy exists;

any policy that selects d∗(x, s) in every state (x, s), where d∗(x, s) is optimal in (2), is an optimal

stationary policy.

Even though the control space is infinite (i.e., d ∈ [0, 1]) in our problem, concavity of the revenue

functions r0i(d) and ri0(d) guarantees that there exists a solution to (2). We provide more details

in Appendix A.2.

3 Lagrangian Relaxations

The Bellman equation (2) can be difficult to solve due to the “curse of dimensionality”: the number

of states is in general exponential in the number of spokes n and the number of resources m. For

example, if n = m, the number of all feasible states of resources is |X | =
(

2n
n

)
≈ 4n√

πn
. Intuitively,

a service provider following an optimal policy has to balance the overall spatial distribution of

resources. For example, suppose a request of type (i, 0) arrives. Although the service provider

would like to accept the request and collect an immediate revenue, an optimal value for the demand

level d depends on the overall spatial distribution of the resources: if the number of resources in

spoke i is low (high) relative to the number of resources at other spokes in the network, the service
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provider should accept the request with a relatively low (high) probability. More generally, the

service provider may try to decrease the probability if accepting the request will cause the overall

distribution of resources to deviate further from some “ideal” distribution of resources, and vice

versa. This behavior may be particularly important in systems in which the number of resources

and the number of locations are comparable. In this section we study Lagrangian relaxations that

decompose the problem over spokes. The Lagrangian relaxation can then be used to generate a

feasible policy as well as an upper bound on the performance V OPT of an optimal policy.

3.1 The Lagrangian Relaxation

We consider a Lagrangian relaxation that relaxes the constraint that the number of resources in

the hub be non-negative or, equivalently, the capacity constraint
∑

i∈[n] xi ≤ m, and uses a dual

variable λ ≥ 0 to penalize violations of this constraint. The Lagrangian relaxation allows the

number of resources in the hub to be negative but in every time period, every resource in the

spokes incurs a cost λ. The set of all feasible states of resources in the Lagrangian relaxation is

X̄ =
{
x = (xi)i∈[n] ∈ Nn : xi ≤ m, ∀ i ∈ [n]

}
; note that here we still require that the number of

resources in each spoke not to exceed the total number of resources m. The Lagrangian relaxation

can be written as

V̄ λ = max
π∈Π

lim
T→∞

1

T
· E

{
T∑
t=1

∑
i∈[n]

(
yi0,t · ri0

(
dπi0,t

)
+ y0i,t · r0i

(
dπ0i,t

))
+ λ

T∑
t=1

(
m−

∑
i∈[n]

xπi,t

)}

s.t. xπi,t+1 = xπi,t − yi0,t · 1
[
ξt ≤ dπi0,t

]
+ y0i,t · 1

[
ξt ≤ dπ0i,t

]
, ∀ i ∈ [n], t ≥ 1, (3)

0 ≤ xπi,t ≤ m, ∀ i ∈ [n], t ≥ 1.

following the same notation as in (1). After the relaxation, the number of resources xπ0,t in the hub

is no longer part of the state; however, we can still determine its value, which might be negative, by

xπ0,t = m−
∑

i∈[n] x
π
i,t. We let V̄ λ denote the optimal value of (3). In Proposition 3.1 we show that

V̄ λ does not depend on the initial state of the system and it provides an upper bound on V OPT.

Moreover, the Lagrangian relaxation decomposes over spokes into a sequence of spoke problems

that can be solved independently.

Proposition 3.1. For any λ ≥ 0, the average revenue V̄ λ of an optimal policy to the Lagrangian

relaxation is independent of the initial state and satisfies V̄ λ ≥ V OPT. Moreover, V̄ λ decomposes
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over spokes as

V̄ λ = mλ+
n∑
i=1

hλi , (4)

where hλi is the average revenue of an optimal policy to each spoke problem, independent of the initial

state of the spoke. Finally, hλi together with the differential value functions vλi (x, i, 0), vλi (x, 0, i),

and vλi (x,∅) satisfies

hλi + vλi (x, i, 0) = max
d∈[0,1∧x]

{
ri0(d) + d ·

(
vλi (x− 1)− vλi (x)

)}
+ vλi (x)− λ · x,

hλi + vλi (x, 0, i) = max
d∈[0,1∧(m−x)]

{
r0i(d) + d ·

(
vλi (x+ 1)− vλi (x)

)}
+ vλi (x)− λ · x,

hλi + vλi (x,∅) = vλi (x)− λ · x,

(5)

for each resource level x ∈ [0 : m] of spoke i, where vλi (x, i, 0), vλi (x, 0, i), and vλi (x,∅) are the

differential value functions for spoke i with x resources and the request type being (i, 0), (0, i), or

one of any other types respectively, and vλi (x) = qi0 · vλi (x, i, 0) + q0i · vλi (x, 0, i) + (1− qi) · vλi (x,∅)

are the average differential value functions over request types.

The decomposition in Proposition 3.1 is intuitive because once we allow the number of resources

in the hub to be negative, the hub has infinite supply of resources and, as a result, decisions in

different spokes no longer affect each other. We prove Proposition 3.1 in Appendix A.3.

Following standard results in dynamic programming, we can solve (5) as an linear program

(LP), with variables representing the value functions in every state. Rather than working with

this LP, we will instead solve a dual formulation of this LP, with variables representing stationary

distributions of the resources and the optimal pricing decisions in every state, as we now describe.

Proposition 3.2. The spoke-specific optimal revenue satisfies:

hλi = max
di(x,i,0)∈[0,1],
di(x,0,i)∈[0,1],

pi(x)≥0

m∑
x=0

pi(x)

[
qi0 · ri0

(
di(x, i, 0)

)
+ q0i · r0i

(
di(x, 0, i)

)]
− λ ·

m∑
x=0

x · pi(x)

s.t.

m∑
x=0

pi(x) = 1,

pi(x) · q0i · di(x, 0, i) = pi(x+ 1) · qi0 · di(x+ 1, i, 0), ∀ x ∈ [0 :m− 1],

di(0, i, 0) = 0, di(m, 0, i) = 0.

(6)

We prove Proposition 3.2 in Appendix A.4. We can interpret pi(x) in problem (6) as the
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stationary probability that spoke i has x resources, and di(x, i, 0) and di(x, 0, i) as the optimal

controls when there are x resources and the request type is (i, 0) and (0, i), respectively. Problem

(6) thus provides an optimal stationary distribution for each spoke and a set of optimal controls

to maximize the average revenue net of the Lagrangian penalty. We refer to the set of demand

values from a solution to (6) as the Lagrangian policy. Once we fix a policy, the dynamics in each

spoke follow a birth-and-death chain process, and hence the stationary distribution is reversible, as

indicated by the second constraint in (6). Finally, we can convert (6) into the convex optimization

problem (7)

hλi = max
pi(x)≥0

m−1∑
x=0

pi(x) · γi

(
pi(x+ 1)

pi(x)

)
− λ ·

m∑
x=0

x · pi(x)

s.t.

m∑
x=0

pi(x) = 1,

(7)

where

γi(β) = max
di0,d0i∈[0,1]

q0i · r0i(d0i) + β · qi0 · ri0(di0)

s.t. q0i · d0i = β · qi0 · di0,
(8)

and we set x · γi
( y
x

)
= 0 if x = 0. γi(β) gives the optimal revenue between the hub and spoke i

when both have infinite capacity and the rate to the spoke is scaled by β. When β is one, this

coincides with the optimal revenue of the fluid problem. We prove the equivalence between (6) and

(7) in Appendix A.4.2 by partitioning the optimization problem. For fixed values of pi(x), we can

find the optimal values of the controls di(x, 0, i) and di(x + 1, i, 0) by setting β = pi(x + 1)/pi(x)

and solving the problem γi(β). Eliminating the controls gives a simpler problem in terms of the

probabilities pi(x) that can be formulated as (7), and convexity follows because the perspective of

a convex function is convex (γi(β) is concave in β by Lemma A.3). In Appendix A.4.3 we provide

a specialized algorithm for solving (7) by exploiting its first-order optimality conditions.

3.2 The Lagrangian Policy in the Relaxation

In this section, we formally define the Lagrangian policy derived from an optimal solution to (6).

The policies we describe in Section 3.4 and analyze in Section 4 correspond to Lagrangian policies

with specific choices of dual variable λ. We discuss how to choose λ in Section 3.4.

We let pi(x), di(x, i, 0) and di(x, 0, i) be an optimal solution to (6). Let Ii =
{
x ∈ [0 : m] :

pi(x) > 0
}

be the support of the probability distribution pi(x); the set Ii is non-empty because∑m
x=0 pi(x) = 1. In Lemma B.1 we show that the set Ii takes the form of Ii = [0 : Hi] for some
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non-negative integer 0 ≤ Hi ≤ m. We use this fact first in the definition of the Lagrangian policy.

Definition 3.1 (Lagrangian Policy). We construct the Lagrangian policy in the following two steps:

1. For a given λ ≥ 0, solve the dual problem (6) for each spoke and let pi(x), di(x, i, 0) and

di(x, 0, i) denote an optimal solution.

2. Store the values of di(x, i, 0) and di(x, 0, i) for all resource levels x ∈ Ii = [0 : Hi], and set

di(x, i, 0) = 1 and di(x, 0, i) = 0 for any x > Hi.
5

In the Lagrangian relaxation, the Lagrangian policy selects di(x, i, 0) if the request type is (i, 0)

and the resource level of spoke i is x, and selects di(x, 0, i) if the request type is (0, i) and the

resource level of spoke i is x. The Lagrangian policy in the original problem is defined analogously,

with the difference that the policy drops the request if the request type is (0, i) and the hub has no

resources.

Lemma B.1 provides several other useful results about the Lagrangian policy for each spoke-

specific DP: specifically, we show that the states in Ii form a single positive recurrent class and

the corresponding Markov chain is aperiodic; thus the limiting distribution converges to a unique

stationary distribution, which is pi(x), independent of the initial state. Finally, the Lagrangian

policy is optimal to each spoke-specific DP.

In Proposition 3.3, we show a key property of the Lagrangian policy: namely, the controls

di(x, i, 0) and di(x, 0, i) are monotone in the resource level x for x ∈ Ii.

Proposition 3.3. For each spoke i ∈ [n], the controls di(x, i, 0) and di(x, 0, i) are increasing and

decreasing in x for x ∈ Ii, respectively.

Figure 2 illustrates the monotonicity property for the controls di(x, i, 0) and di(x, 0, i). Specif-

ically, when a request (i, 0) arrives, if there are many resources in spoke i, the service provider

following the Lagrangian policy will increase the acceptance probability (and hence decrease the

price) to encourage resources to relocate out of i, and vice versa.

The monotonicity property in Proposition 3.3 implies that the stationary distribution pi(x)

in (6) is (discrete) log-concave, which is useful for analyzing the performance of the Lagrangian

policies (see Proposition B.9 for a formal statement). Intuitively, this suggests that the stationary

5We have flexibility to set the controls for any unsupported state x ∈ Ici , where Ici denotes the complement of Ii,
because we only require that the states x ∈ Ici be transient under the Lagrangian policy. Lemma B.1 shows that set
Ii is a positive recurrent class under the Lagrangian policy, so it suffices to set di(x, i, 0) > 0 for any state x > Hi.
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Figure 2: The optimal control from solving (6) for the spoke problem with m = 20, qi0 = q0i = 0.05, and
dual variable λ = 0.003. All private values follow uniform distributions with support [0, 1].

distribution for each spoke under the Lagrangian policy will peak around some “intermediate”

states (see Figure 3(a)).

Finally, we show that when considering the full Lagrangian relaxation (across all spokes), the

set
∏n
i=1 Ii forms a positive recurrent class that is aperiodic: hence, the Lagrangian policy is a

unichain policy in the Lagrangian relaxation and all initial states share the same average revenue.

Moreover, in the Lagrangian relaxation, the stationary distribution of resources are independent

across spokes, which will also be helpful in our ensuing analysis. These facts are presented formally

in Corollary B.10.

3.3 The Lagrangian Dual Problem

From Proposition 3.1, we can use the Lagrangian relaxation as an upper bound on the performance

of an optimal policy. Although any λ ≥ 0 provides an upper bound, we want to choose λ ≥ 0 to

provide the best possible bound. We can write the Lagrangian dual problem as

V R , min
λ≥0

V̄ λ, (9)

where V̄ λ is given in (4). We let λ∗ denote an optimal solution to (9). The objective V̄ λ in (9)

is convex in λ and (9) can be solved efficiently (e.g., using bisection). We provide more details in

Appendix C on different formulations of (9) and on solving (9).

Proposition 3.4 provides necessary and sufficient optimality conditions for λ.
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Proposition 3.4. The dual variable λ∗ is optimal to (9) if and only if

(λ∗ ≥ 0) ⊥

(
n∑
i=1

m∑
x=0

x · pi(x) ≤ m

)
, (10)

where pi(x) is optimal to (6) with λ∗ and ⊥ denotes that at least one of these conditions is binding.

It follows that the Lagrangian dual problem (9) is equivalent to the problem of maximizing

the average revenue subject to the constraint that the expected number of resources in the hub is

non-negative.

3.4 Lagrangian Policy in the Original Problem and Perturbed Lagrangian Relaxation

The Lagrangian policy can be implemented in the original (i.e., fully constrained) problem as well,

with the only difference that requests from the hub are lost when the hub contains zero resources.

Analogous to Corollary B.10, we can show that the Lagrangian policy is a unichain policy in the

original problem, and hence with this policy all initial states lead to the same average revenue.

This is formalized in Corollary B.11.

One may consider using the Lagrangian policy with an optimal dual variable λ∗ as a policy in the

original system. However, according to (10), if λ∗ > 0, the capacity constraint
∑n

i=1

∑m
x=0 x·pi(x) ≤

m is binding and using this Lagrangian policy may leave too few resources in the hub: in the

Lagrangian relaxation, there are zero resources in the hub in expectation when λ∗ > 0. Instead, we

develop policies that attempt to leave the hub with some amount δ = o(n) of resources on average

by solving a “perturbed” Lagrangian relaxation

V R(δ) = min
λ≥0

V̄ λ − δλ. (11)

Comparing (11) to (9), and noting the optimality conditions (10), an optimal policy to (11) ensures

the expected number of resources in the hub is at least δ. Let λ∗(δ) denote an optimal solution

to (11). We consider the Lagrangian policy with dual variable λ∗(δ). We denote this Lagrangian

policy by π(δ) and denote its performance in the original problem by V π(δ). Note that although

V R(0) = V R is the tightest upper bound from the Lagrangian relaxation, V R(δ) is not necessarily

an upper bound on V OPT when δ > 0.

The Lagrangian policy only depends on the resource level of the spoke involved in the request

and the request type, and is not necessarily optimal to the original problem. In Section 4, we analyze

the performance of the policy π(δ) and we show that, with a specific choice of δ, the performance
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gap V OPT − V π(δ) converges to zero under a scaling where the number of spokes increases and the

number of resources per location remains fixed.

4 Performance Analysis

In this section we provide our main results. Theorem 4.1 first bounds the performance gap of our

policy by a term proportional to the probability the hub runs out of resources plus a perturbation

term. In Sections 4.3 and 4.4 we bound the probability that the hub runs out of resources when

spokes satisfy some regularity conditions.

Theorem 4.1. For any λ∗(δ) optimal to (11), the corresponding Lagrangian policy π(δ) satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) · P

[
X0(δ) = 0

]
,

where P
[
X0(δ) = 0

]
is the stationary probability that the hub runs out of resources in the original

problem under the policy π(δ).

The first inequality of the theorem follows because our policy is feasible and the second from

Proposition 3.1. The final inequality in Theorem 4.1 then follows from two key steps:

1. We bound from above the Lagrangian relaxation bound V R in terms of the optimal value

V R(δ) of the perturbed problem (11) plus a term that is proportional to δ
m−δ (Lemma 4.2).

The analysis in this step is deterministic in nature and uses results from sensitivity analysis

for convex optimization.

2. We bound from below the performance V π(δ) of the policy π(δ) in terms of the optimal value

V R(δ) of the perturbed problem (11) minus a term that is proportional to the stationary

probability that the hub runs out of resources in the original problem (Lemma 4.3). The

analysis in this step is probabilistic in nature and involves studying the dynamics induced by

the Lagrangian policy in the relaxed and original systems.

Theorem 4.1 then follows by combining the upper bound from step 1 and the lower bound from

step 2.

4.1 Bounding V R − V R(δ)

In this section we bound from above the gap V R − V R(δ) between the Lagrangian bound and the

optimal value of the perturbed problem (11). Recall that we denote by λ∗(δ) an optimal solution
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to (11). Since −λ∗(δ) is a super-gradient of V R(δ), we have

V R(δ) ≤ V R(0) = V R ≤ V R(δ) + λ∗(δ) · δ, (12)

where the first inequality is because V R(δ) is decreasing in δ. It is not hard to show that for any

δ < m, the optimal dual variable λ∗(δ) satisfies λ∗(δ) ≤ r̄
m−δ . This implies that when m

n is a fixed

ratio, for any δ = o(n), the term λ∗(δ) · δ in (12) goes to zero and as a result V R(δ) will converge

to the Lagrangian upper bound V R.

Putting these facts together leads to the following result.

Lemma 4.2. The Lagrangian upper bound V R and the optimal value V R(δ) of (11) satisfy

V R(δ) ≤ V R(0) = V R ≤ V R(δ) + r̄ · δ

m− δ
.

4.2 Bounding V R(δ)− V π(δ)

In this section we bound the gap V R(δ)−V π(δ) between the optimal value of the perturbed problem

(11) and the average revenue of the policy π(δ) in the original problem.

We first consider a relaxation in which we drop the constraint x0 ≥ 0 and we retain all other con-

straints. We refer to this as the relaxed system, and this is equivalent to the Lagrangian relaxation

without the terms corresponding to the Lagrangian penalty (i.e., with λ = 0). The average revenue

of the Lagrangian policy π(δ) in the relaxed system equals V R(δ); this follows from complementary

slackness as given in (10) with m replaced by m− δ. Thus obtaining a bound on V R(δ)− V π(δ) is

equivalent to obtaining a bound on the difference between the average revenues of the Lagrangian

policy in the relaxed and the original systems.

According to Corollaries B.10 and B.11, in both systems, the limiting distribution converges to

a unique stationary distribution starting from any initial state. We let the random variables Xi(δ)

and X̃i(δ) denote the number of resources in location i ∈ [0 : n] under the stationary distributions

of the Lagrangian policy π(δ) in the original and the relaxed systems, respectively. In Lemma 4.3

we bound the gap V R(δ)−V π(δ) in terms of P
[
X0(δ) = 0

]
, the stationary probability that the hub

runs out of resources in the original problem.

Lemma 4.3. The average revenues V R(δ) and V π(δ) of the policy π(δ) in the relaxed and the
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original systems satisfy

V R(δ)− V π(δ) ≤ (r̄ + ω̄) ·
(∑
i∈[n]

q0i

)
· P
[
X0(δ) = 0

]
≤ (r̄ + ω̄) · P

[
X0(δ) = 0

]
.

We prove Lemma 4.3 in Appendix A.8 by first showing that the value function of the Lagrangian

policy in the relaxed system approximately solves the Bellman equation of the original system along

the path induced by the Lagrangian policy in the original system. We then use a verification theorem

to bound the total loss between these two systems. The first step follows because the Lagrangian

policy takes different actions in these two systems at the same state (x, s) only when x0 = 0 and

s = (0, i) for some i ∈ [n], i.e., when the hub is depleted and there is a request originating from the

hub. By using the monotonicity property of the Lagrangian policy in Proposition 3.3, we show that

every time the Lagrangian policy differs in the two systems, the difference in continuation value

functions is at most r̄ + ω̄. Hence the difference of the average revenues in the two systems can

be bounded from above by r̄ + ω̄ times the probability that the hub runs out of resources in the

original system. Our approach is similar in spirit to the “compensated coupling” argument used in

Vera and Banerjee (2018).

Lemma 4.2 and Lemma 4.3 imply Theorem 4.1. In Lemma 4.4 we show that for each spoke

i ∈ [n], the number of resources X̃i(δ) in the relaxed system first-order stochastically dominates

the number of resources Xi(δ) in the original system.

Lemma 4.4. The number of resources X̃i(δ) in each spoke i ∈ [n] of the relaxed system first-

order stochastically dominates the number of resources Xi(δ) in the original system. The number

of resources X̃0(δ) in the hub of the relaxed system is first-order stochastically dominated by the

number of resources X0(δ) in the original system.

We prove Lemma 4.4 in Appendix A.9 by coupling Xi(δ) and X̃i(δ) based on the same arrival

sequence of requests. Intuitively, since the hub in the relaxed system has infinite supply of resources

(because the number of resources in the hub can be negative), requests to the spokes can always

be fulfilled in the relaxed system, which implies that the number of resources in each spoke in

the relaxed system remains no smaller than that in the original system. Figure 3 illustrates the

stochastic dominance relationship.

Lemma 4.4 implies that the depletion probability P
[
X0(δ) = 0

]
of the original system is bounded

from above by the depletion probability P
[
X̃0(δ) ≤ 0

]
of the relaxed system.
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Figure 3: The stationary distribution of the number of resources in a spoke and the hub under the Lagrangian
policy in the original and relaxed systems, respectively. We set n = 10, m = 20, qi0 = q0i = 0.05 for all
spokes i ∈ [n], and use the dual variable λ = 0.003. All private values follow standard uniform distributions
with support [0, 1]. The dual variable λ = 0.003 is optimal to the perturbed Lagrangian relaxation (11) with
δ =
√
n lnn = 4.80; thus δ is the mean number of resources in the hub of the relaxed problem.

Corollary 4.5. The depletion probability P
[
X0(δ) = 0

]
of the original system is bounded from above

by the depletion probability P
[
X̃0(δ) ≤ 0

]
of the relaxed system, i.e.,

P
[
X0(δ) = 0

]
≤ P

[
X̃0(δ) ≤ 0

]
.

Therefore, in order to control the probability that the hub runs out of resources in the original

system, it suffices to control the probability that the hub has a non-positive amount of resources

in the relaxed system. The latter is easier to analyze because the number of resources in each

spoke are independent in the relaxed system (by Corollary B.10). In the next section we bound

this probability from above if the expected number resources in each spoke is uniformly bounded.
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4.3 Bounding the Hub Depletion Probability

In this section we show that if the expected number of resources E
[
X̃i(δ)

]
in each spoke of the

relaxed system is uniformly bounded by some constant (Assumption 4.1), then with a particular

choice of the parameter δ, the depletion probability P
[
X̃0(δ) ≤ 0

]
of the relaxed system shrinks

to zero as the number of spokes n increases and the ratio m
n remains fixed. Thus from Theorem

4.1 and Corollary 4.5, the Lagrangian policy is asymptotically optimal in this regime. We provide

sufficient conditions for Assumption 4.1 to hold in Section 4.4.

Assumption 4.1. E
[
X̃i(δ)

]
≤ c for all spokes i ∈ [n] and δ ≥ 0, and some constant c > 0 that is

independent of n.

Proposition 4.6. Suppose Assumption 4.1 holds. Letting b = 1
1+c , the depletion probability of the

relaxed system satisfies

P
[
X̃0(δ) ≤ 0

]
≤ exp

(
− b

2
· δ2

m+ n

)
.

We prove Proposition 4.6 in Appendix A.10 by developing a concentration inequality for a sum

of independent random variables with discrete log-concave distributions and uniformly bounded

means. The random variables X̃i(δ) for i ∈ [n] are independent and log-concave by Proposition

B.9 and Corollary B.10; their mean values are uniformly bounded by assumption. Intuitively, the

variance of X̃0(δ) is linear in n because X̃0(δ) = m −
∑

i∈[n] X̃i(δ) and the variances of X̃i(δ)

for i ∈ [n] are uniformly bounded (this follows from the means being uniformly bounded and log-

concavity). From the discussion in Section 3.4, the mean value of X̃0(δ) is at least δ. Thus if δ grows

faster than the standard deviation of X̃0(δ), which is of order
√
n, the probability that the hub

has a non-positive amount of resources in the relaxed system goes to zero. Although this intuition

is based on a Chebyshev-like analysis, we can in fact obtain an exponential rate of convergence

by bounding the moment generating functions of X̃i(δ) by a geometric distribution with the same

mean.

Putting Theorem 4.1, Corollary 4.5, and Proposition 4.6 together, we obtain the following result.

Corollary 4.7. Under Assumption 4.1 and letting b = 1
1+c , the Lagrangian policy π(δ) with 0 ≤ δ <

m satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) · exp

(
− b

2
· δ2

m+ n

)
.
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In particular, if we set δ =
√

1
b · (m+ n) · lnn, we have

V OPT − V π(δ) ≤ O

(√
lnn

n

)

when m and n grow at the same rate.

4.4 Sufficient Conditions for Uniformly Bounded Spoke Resources

In this section, we provide sufficient conditions for Assumption 4.1 to hold. Intuitively, when

spokes are not too different from each other, resources would tend to distributed evenly across the

network and the expected number of resources in each spoke would be uniformly bounded. In the

extreme case when all spokes are identical, since the total number of resources at the spokes in

the relaxed system is no larger than m− δ, we have E
[
X̃i(δ)

]
≤ m

n for all i ∈ [n] by symmetry. A

similar reasoning applies to a more general high multiplicity model in which spokes are partitioned

into a fixed number of types and the number of spokes of each type s is a fixed proportion αs

of n; we can take c = m
α·n with α = mins αs being the smallest proportion. Lemma 4.8 further

generalizes the high multiplicity assumption and shows that under some regularity conditions on the

problem primitives, Assumption 4.1 holds; in particular, these conditions imply that our theoretical

guarantees hold even when all spokes are different from each other.

Lemma 4.8. Suppose that for the single hub case, in addition to Assumption 2.1, that

1. the revenue functions rij(d) are twice continuously differentiable and rij(1) ≥ 0;

2. the revenue functions rij(d) are strongly concave with some parameter uij > 0 and have a

Lipschitz continuous gradient with some parameter Uij > 0, i.e., uij ≤ −r′′ij(d) ≤ Uij for all

d ∈ [0, 1]. Moreover, uij ≥ ū and Uij ≤ Ū for some positive constants ū and Ū ;

3. the arrival rates qi0, q0i ∈
[ q
n ,

q̄
n

]
for some positive constants q and q̄ and all spokes i ∈ [n].

Then Assumption 4.1 holds.

We prove Lemma 4.8 in Appendix A.11. Typical private value distributions that lead to revenue

functions satisfying Assumption 2.1 and Lemma 4.8 include uniform distributions, truncated ex-

ponential distributions and truncated normal distributions with support [a, b] and 0 ≤ a ≤ b <∞,

and truncated log-normal distributions with support [a, b] and 0 < a ≤ b <∞.
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5 Comparing to Static Pricing Policies

In this section we compare the Lagrangian policy to static pricing policies. A static pricing policy

specifies a demand level dij for each origin-destination pair (i, j) and selects dij whenever the request

type is (i, j) and the number of resources at location i is positive. From Banerjee et al. (2016) we

can solve a fluid relaxation problem to get a set of static prices. For an arbitrary network with n

locations, the fluid relaxation is (13)

V F = max
dij∈[0,1]

n∑
i=1

n∑
j=1

qij · rij(dij)

s.t.

n∑
j=1

qji · dji =

n∑
j=1

qij · dij , ∀ i ∈ [n].

(13)

The optimal value of (13) provides an upper bound on V OPT and we denote the static policy by

πF and its performance by V (πF). We have V (πF) = m
m+n−1V

F from Whitt (1984) (especially

Equation (13) therein). Banerjee et al. (2016) also show that the fluid policy can be quite different

from the optimal static policy (Appendix E therein): V (πF) can be arbitrarily close to m
m+n−1 of

the performance of the optimal static policy.

The reason that fluid-based static policies may perform worse than other static policies is that

the flow balance constraint in (13) does not incorporate the probability that a location is empty.

For example, for a hub-and-spoke network, the “exact” flow balance constraint for a general static

pricing policy is:

P[location i not empty] · qi0 · di0 = P[location 0 not empty] · q0i · d0i,

whereas the flow balance equation in (13) is simply qi0 · di0 = q0i · d0i for each spoke i. In the large

supply regime, since limn→∞ P[location i not empty] = 1 for any location i ∈ [0 : n], this difference

is inconsequential. However, in the large network regime we consider, the depletion probability at

a node can be strictly positive, so it is essential to incorporate these probabilities.

In general, solving for an optimal static pricing policy for a general network seems to be difficult.

For a hub-and-spoke network, however, we can use the same Lagrangian method to derive a perfor-

mance bound for any static policy and characterize the optimal static policy in the large network

limit. The construction and analysis are analogous to the previous sections, and we provide more

details in Appendix D. Proposition 5.1 compares the performances of the optimal static policy and

the fluid policy for a single hub network with symmetric spokes.
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Proposition 5.1. Consider a single hub network with n identical spokes and let γ̂(β) =
∑

i∈[n] γi(β)

with γi(β) as defined in (8). The performance of the fluid policy is V (πF) = m
m+n γ̂(1) and the

performance V S of the optimal static policy converges to γ̂
(

m
m+n

)
in the large network limit.

We prove Proposition 5.1 in Appendix D.2. Since γ̂(β) is strictly concave by Lemma A.3 and

γ̂(0) = 0 by Lemma A.4, we have V S > V (πF) by Jensen’s inequality. Finally, Example 5.1 shows

that the optimal static policy is strictly suboptimal in the large network regime.

Example 5.1. Consider a single hub example with n identical spokes and m = 2
3n resources. All

private values are uniformly distributed on [0, 1] and the arrival rates are qi0 = q0i = 1
2n for

all i ∈ [n]. Since the request rates to and from a spoke are equal, the optimal solution to the

fluid relaxation is di0 = d0i = 1
2 for all i ∈ [n], the fluid relaxation bound is the trivial bound

V F = γ̂(1) = 1
4 that equals r̄, and the performance of the fluid policy is V (πF) = m

m+nV
F = 1

10 .

On the other hand, γ̂(β) = 1
2 ·

β
1+β and hence the performance of the optimal static policy will not

exceed γ̂
(

m
m+n

)
= 1

7 ≈ 0.143 in the large network regime. The optimal static policy converges to

di0 = m+n
2m+n = 5

7 and d0i = m
2m+n = 2

7 in the limit. The optimal static policy is strictly suboptimal:

we can show a simple dynamic policy that limits each spoke to contain at most two resources

achieves an asymptotic performance of approximately 0.152. Details for these calculations are

provided in Appendix D.3.

6 Extensions

The policies and upper bounds developed in Section 4 can be extended to more general networks

with multiple, interconnected hubs. In shared vehicle applications, we can imagine such network

structures as capturing several nearby urban areas and other major traffic centers such as an

airport (the hubs) that are surrounded by a large number of more distant suburbs (the spokes).

Multiple hub systems are also used widely in other industries, such as airlines (e.g., Tran et al.

2017). In Section 6.1, we extend the Lagrangian relaxation to multiple-hubs networks in which

resources can relocate between hubs and between a hub and a spoke but not between spokes. We

provide performance bounds and prove asymptotic optimality only for the special case of “uniformly

related” hubs. We further incorporate spoke-to-spoke connections in Section 6.2. Finally, we discuss

how to incorporate nonzero relocation times in the bounds and policies in Section 6.3. While the

theoretical analysis for general networks remains an open challenge, in Section 7 we study these

approximations on several numerical examples and find that they lead to good performance.
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Figure 4: A hub-and-spoke network with 3 hubs (grey) and n spokes (white).

6.1 Multiple Hubs

In this section, we consider network structures with multiple, interconnected hubs, as illustrated

in Figure 4. We assume resources can be relocated between hubs and between a hub and a spoke,

but not between spokes. In the following, we let J denote the number of hubs and we use variable

j to denote a hub and variable i to denote a spoke.

In the Lagrangian relaxation, in addition to dualizing the capacity constraint
∑

i∈[n] xi ≤ m

using a dual variable λ ≥ 0 and dropping the constraint d ≤ xj when some request (j, i) arrives,

we dualize the flow balance constraint for each hub j, i.e., the constraint that, for each hub, the

average inflow of resources is equal to the average outflow of resources. Note that flow balance is

a “valid” equality in the sense that it is not an explicit constraint of the model, but every feasible

policy must satisfy this constraint. In particular, denoting by µj ∈ R the Lagrange multiplier for

hub j, we introduce a reward µj for every resource that moves to hub j and a penalty −µj for

every resource that leaves hub j.

Following this reasoning, for any λ ≥ 0 and µ = (µj)j∈[J ] ∈ RJ , the Lagrangian relaxation

provides an upper bound on the average revenue V OPT of an optimal policy, which we denote by

V̄ λ,µ. Moreover, the Lagrangian relaxation decomposes over spokes with

V̄ λ,µ = mλ+

n∑
i=1

hλ,µi +
∑
j,j′∈J

qjj′ · gµjj′ , (14)

where gµjj′ , maxd∈[0,1]

{
rjj′(d) + d ·

(
µj′ − µj

)}
denotes the average revenue earned from a hub-

to-hub request (j, j′), and hλ,µi denotes the average revenue of an optimal policy to each spoke i
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problem. Let dµjj′ , argmaxd∈[0,1]

{
rjj′(d) + d ·

(
µj′ − µj

)}
denote the optimal demand value for

the type (j, j′) requests; since we relax the capacity constraints of each hub, dµjj′ is independent of

the resource levels of hubs j and j′. Finally, analogously to Proposition 3.2, hλ,µi is equal to the

optimal value of the following optimization problem:

hλ,µi = max
di(x,i,j)∈[0,1],
di(x,j,i)∈[0,1],

pi(x)≥0

m∑
x=0

pi(x) ·
J∑
j=1

{
qij · rij

(
di(x, i, j)

)
+ qji · rji

(
di(x, j, i)

)}

+
J∑
j=1

µj

m∑
x=0

pi(x) ·
{
qij · di(x, i, j)− qji · di(x, j, i)

}
− λ ·

m∑
x=0

x · pi(x)

s.t.

m∑
x=0

pi(x) = 1, (15)

pi(x) ·
J∑
j=1

qji · di(x, j, i) = pi(x+ 1) ·
J∑
j=1

qij · di(x+ 1, i, j), ∀ x ∈ [0 :m− 1],

di(0, i, j) = 0, di(m, j, i) = 0, ∀ j ∈ [J ].

Compared to (6), the objective incorporates a penalty for the violation of the flow balance constraint

of each hub. We can solve (15) in a similar manner to (6) using the algorithms developed in Lemma

A.7. The Lagrangian dual problem

V R , min
λ≥0,µ∈RJ

V̄ λ,µ

provides the tightest possible Lagrangian relaxation upper bound and is equivalent to the problem

of maximizing the average revenue subject to the constraints that the expected number of resources

in the hubs is non-negative and all hubs are flow-balanced. The latter follows because the first-

order condition with respect to µj implies that
∑n

i=1

∑m
x=0 pi(x) ·

(
qij · di(x, i, j)− qji · di(x, j, i)

)
+∑

j′∈[J ]

(
qj′jdj′j − qjj′djj′

)
= 0, i.e., hub j is flow-balanced in expectation.

Finally, we can construct Lagrangian policies that attempt to leave δ = o(n) resources on

average to the hubs, by solving a perturbed problem

V R(δ) = min
λ≥0,µ∈RJ

V̄ λ,µ − δλ. (16)

Let λ∗(δ) and µ∗(δ) be an optimal solution to (16). We let our policy π(δ) be the adaptive control

from solving (15) with the dual variables λ∗(δ) and µ∗(δ) for requests (i, j) or (j, i) between a hub
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j and a spoke i, and the static control d
µ∗(δ)
jj′ for requests of type (j, j′) between hubs. We denote

the performance of π(δ) in the original problem by V π(δ). Analogous to Theorem 4.1, we can

bound the performance gap by a term proportional to the depletion probabilities of the hubs in the

original problem, plus a perturbation term, as shown in Theorem 6.1.

Theorem 6.1. For any λ∗(δ) and µ∗(δ) optimal to (16), the corresponding Lagrangian policy π(δ)

satisfies

V π(δ) ≤ V OPT ≤ V R ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) ·

∑
j∈[J ]

qj · P
[
Xj(δ) = 0

]
,

where P
[
Xj(δ) = 0

]
is the stationary probability that hub j runs out of resources in the original

problem under the policy π(δ), and qj =
∑

i∈[n] qji +
∑

j′∈[J ] qjj′ is the probability that hub j is the

originating location of the request.

We prove Theorem 6.1 in Appendix A.12. Theorem 6.1 implies that the policy π(δ) only loses

a small performance if the depletion probabilities of each hub are small. We conjecture that with

proper choice of the parameter δ, the depletion probability of each hub decreases to zero and hence

the Lagrangian policy is asymptotically optimal when the number of spokes n and resources m

grow at the same rate, and the hubs and their interconnections remain fixed. The challenge in

proving this conjecture is that the Lagrangian relaxation does not explicitly control the number of

resources in each of the hubs. Corollary 4.5 and Proposition 4.6 imply that the probability that the

sum of resources in the hubs being zero diminishes at an exponential rate; to show the depletion

probability of each hub diminishes, we need to analyze the joint distribution of resources across

hubs. In Appendix E, we fully characterize the joint distribution across the hubs for a special case

that we refer to as uniformly related hubs, where the ratio of the arrival rate to a spoke from a hub

to the arrival rate of the reverse trip is constant across hubs, and myopic pricing for hub-to-hub

relocations yields balanced flow within hubs. We show that the stationary distribution across hubs

is uniform with uniformly related hubs. This implies that the depletion probability for each hub is

small and as a result, the policy π(δ) is asymptotically optimal when the number of spokes n and

resources m grow at the same rate and the number of hubs is o(n).

6.2 Incorporating Spoke-to-Spoke Connections

In this section we further extend the method to handle spoke-to-spoke connections. Although the

approach applies to arbitrary networks, we expect this approach will work well when spoke-to-spoke
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requests constitute a small fraction of the total requests. Without loss of generality, we assume

that no request relocates a resource within a spoke, i.e., qii = 0 for all i ∈ [n], because the service

provider can simply choose d∗ii to maximize the immediate revenue when these requests arrive.

In the Lagrangian relaxation, as before, we relax the capacity constraint
∑n

i=1 xi ≤ m with a

dual variable λ ≥ 0 and drop the constraint d ≤ xj when some request (j, i) arrives, and relax the

flow balance constraint for each hub j with a dual variable µj ∈ R as before. We further relax the

relocation constraint for each spoke-to-spoke request (i, i′), i.e., the constraint xi′,t+1 = xi′t + 1 if

a request (i, i′) arrives at time t and is fulfilled, and xi′,t+1 = xi′t if not fulfilled, using the same

dual variable νii′ ∈ R. This is equivalent to a model in which: (a) when a request (i, i′) arrives

and is fulfilled, the provider receives an additional reward νii′ and one resource exits the system

from spoke i; and (b) the provider has the option to add one resource at the destination at a price

νii′ . Since every feasible policy to the original problem is feasible to the Lagrangian relaxation

and attains an objective value that is no smaller, the Lagrangian relaxation provides a valid upper

bound for all dual variables λ ≥ 0, µ ∈ RJ and ν ∈ Rn×n, which we denote by V̄ λ,µ,ν .

Similar to the previous section, this Lagrangian relaxation also decomposes over spokes and

hubs with the form

V̄ λ,µ,ν = mλ+

n∑
i=1

hλ,µ,νi +
∑

j,j′∈[J ]

qjj′ · gµjj′ ,

where gµjj′ , maxd∈[0,1]

{
rjj′(d) + d · (µj′ − µj)

}
denotes the average revenue earned from a hub-

to-hub request (j, j′) as in (14), and hλ,µ,νi denotes the average revenue of an optimal policy to

each spoke i problem; this optimal average revenue may be calculated by solving an optimization

problem similar to (15) that includes additional decision variables di(x, i, i
′) that denote the demand

values to use when a spoke-to-spoke request (i, i′) arrives and spoke i has x resources, and decision

variables di(x, i
′, i) that denote the probability that the provider will add one resource in location i

when a request (i′, i) arrives with x resources in spoke i. The objective function further incorporates

a penalty for the violation of the relocation constraint of each spoke-to-spoke connection. We define

this problem formally and justify the above decomposition in Proposition B.12.

We can obtain the tightest possible Lagrangian relaxation upper bound by solving the La-

grangian dual problem

V R , min
λ≥0,µ∈RJ ,ν∈Rn×n

V̄ λ,µ,ν .

This problem is equivalent to maximizing the average revenue subject to the constraints that the

expected number of resources in the hubs is non-negative, the in-flow and out-flow of each hub j is
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balanced in expectation, and for each spoke-to-spoke connection (i, i′), the out-flow of spoke i via

requests (i, i′) is equal to the in-flow of spoke i′ via requests (i, i′) in expectation. Proposition 6.2

shows that the Lagrangian relaxation provides tighter bounds than the fluid relaxation bound.

Proposition 6.2. The fluid relaxation bound V F in (13) is weaker than the Lagrangian relaxation

bound minµ,ν V̄
λ=0,µ,ν where the dual variables µ and ν are optimal when λ = 0 is fixed, i.e.,

V R ≤ min
µ,ν

V̄ λ=0,µ,ν ≤ V F.

Thus, for a general network, regardless of which nodes we take to be hubs, this approach is

guaranteed to provide tighter bounds than the fluid relaxation. Note also that the fluid relaxation

corresponds to the case when all nodes are hubs. We prove Proposition 6.2 in Appendix B. Finally,

we can construct Lagrangian policies that attempt to leave δ = o(n) resources on average in the

hubs, by solving a perturbed problem

V R(δ) = min
λ≥0,µ∈RJ ,ν∈Rn×n

V̄ λ,µ,ν − δλ. (17)

Let λ∗(δ), µ∗(δ) and ν∗(δ) be an optimal solution to (17). We let our policy π(δ) be the adaptive

control di(x, i, j), di(x, j, i) and di(x, i, i
′) from solving the optimization problem for each spoke

(given in (67) in Appendix B) with dual variables λ∗(δ), µ∗(δ) and ν∗(δ), for requests (i, j) or (j, i)

between a hub j and a spoke i and requests (i, i′) between spokes, and the static control d
µ∗(δ)
jj′ for

requests of type (j, j′) between hubs.

6.3 Incorporating Relocation Times

In this section we further incorporate nonzero relocation times. We assume relocation times of

resources on (i, j) are i.i.d. and we denote these relocation times by a positive random variable

Γij and denote their mean values by τij , E
[
Γij
]
. We again consider the embedded discrete time

model where each period corresponds to a new request. With general relocation times, we need to

track the number of resources in each location as well as the resources in transit and the relocation

times they have already spent relocating.

We consider the same relaxations as in Section 6.2. First, we relax the capacity constraint

that the number of resources in the hubs is non-negative with a dual variable λ ≥ 0 and drop

the constraint d ≤ xj when some request leaves the hub j: this involves that at the beginning of

each period, we receive a reward mλ but penalize every resource that is either in a spoke or in
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transit with a cost λ. We also relax the flow balance constraint of each hub j with a dual variable

µj ∈ R, thus every resource that enters the hub j receives a reward µj and every resource that

leaves the hub j incurs a penalty −µj . Since we consider an infinite horizon setting, we assume

without loss that all rewards are collected at the beginning of the relocation. Finally, we relax

the relocation constraint for each spoke-to-spoke request (i, i′) that involves two different spokes

with a dual variable νii′ ∈ R. In effect, when a request (i, i′) arrives and is fulfilled, we receive

a reward νii′ and one resource exits the system from spoke i. We can add one resource at the

destination at a cost νii′ and a waiting time Γii′ regardless of the fulfillment. Since every feasible

policy to the original problem is feasible to the Lagrangian problem and attains an objective value

that is no smaller, the Lagrangian relaxation provides a valid upper bound V̄ λ,µ,ν for any dual

variables λ ≥ 0, µj ∈ R and νii′ ∈ R. Moreover, analogous to Proposition B.12, the relaxation still

decomposes over spokes.

In Appendix F, we characterize the spoke problem when there is one hub and all relocation

times follow exponential distributions. In this case, the resulting spoke problem has two state

variables, which leads to a tractable optimization problem.

With general relocation times, the spoke problem is difficult to solve, because we need to track

the relocation times of all the resources in transit. We further relax each spoke problem to provide

a tractable upper bound by considering a relaxation that enables resources that are moving towards

the spoke to be instantaneously available at the spoke. Since a resource incurs a penalty λ per

period whether it is at the spoke or moving to it, it is always better to keep the resources at the

spoke as this grants the decision maker flexibility to serve more requests. Thus, after the relaxation,

we only need to track the number of resources in the spoke because resources that are moving out

of the spoke do not need to be tracked6. We formalize this relaxation in Proposition B.13. We

note that this relaxation may not provide asymptotically tight upper bounds, but this approach

can provide high-quality bounds and policies in practice (see the examples in Section 7.2).

7 Numerical Examples

In this section, we examine the performance of the Lagrangian policy and the Lagrangian relaxation

upper bound on some numerical examples. We consider two examples: a synthetic example with a

single hub and a more realistic example based on data from RideAustin. In Appendix G, we show

6 As in Banerjee et al. (2016) and Braverman et al. (2016), we can use Little’s law for the expected number of
resources moving out of a spoke to obtain that every resource leaving the spoke to a hub j incurs a penalty λΛτij in
expectation because relocation (i, j) takes Λ · τij periods on average.

30



the stationary distributions of the resources in the hub under various policies for the single hub

example, and we provide another synthetic example with multiple hubs.

7.1 Single Hub Examples

We first consider examples with one hub. The number of spokes n increases linearly from 100 to 1000

with step size 100 and we assume that all spokes are identical, the arrival rates are qi0 = q0i = 1
2n

for all spokes i ∈ [n], the number of resources is m = 2n, and the private values for all request

types are uniformly distributed in [0, 1].

For each fixed n, we calculate: (a) the performance of the policy V π(δ) with δ =
√
n lnn;

(b) the Lagrangian relaxation upper bound V R; (c) the fluid relaxation bound V F; and (d) the

performance of the fluid-based static policy V (πF). We additionally consider a static pricing policy

πS with d0i = β
1+β and di0 = 1

1+β , using β = ρ
1+ρ with ρ = m

n −
δ
n = 2 −

√
lnn
n ; based on the

analysis in Appendices D.1 and D.2, πS converges to the optimal static pricing policy in the large

network regime. For each fixed n, we additional calculate: (e) the performance V (πS) of the static

policy V (πS). We estimate the values V π(δ), V (πF), and V (πS) with 100 sample paths and for each

sample path we approximate the average revenue with a time average of the total revenue of the

first 4000n time periods; this led to very low standard errors in the results (see (b) of Figure 5 for

a sense of this).

Figure 5 shows the simulation results for the single-hub case. From Figure 5, the fluid relaxation

bound is quite weak and the fluid-based static policy does not appear to converge to optimality. In

fact, since the request rates from and to a location are equal for all locations, the optimal solution

to (13) is dij = d∗ij = 1
2 for all request types and the fluid relaxation upper bound is the trivial

bound V F = r̄ = 1
4 . The Lagrangian policy, however, performs very well and the gap between the

Lagrangian relaxation bound and the performance of the Lagrangian policy clearly diminishes as

n grows.

The policy πS is also strictly suboptimal. Analogous to Example 5.1, the performance of any

static policy is no larger than 1
2 ·

m
2m+n = 1

5 in the large network regime, and the performance V (πS)

converges to this value as n increases. Note that the optimal static pricing policy is quite different

from the fluid policy not only in terms of performance, but also in terms of controls. Intuitively,

the optimal static policy will pool resources at the hub, but a dynamic pricing policy does so more

efficiently.
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Figure 5: Simulation results of the single-hub case. (b) is simply a magnified version of (a) highlighting the
performance of our policy and the Lagrangian relaxation upper bound. A 95% confidence interval around

V π
(√

n lnn
)

is plotted with dashed lines in (b).

7.2 RideAustin Example

In this section, we evaluate the policies and bounds using a model calibrated on empirical data

from RideAustin (RideAustin 2017). The data set covers about 1.5 million transactions over a

course of 10 months. Each transaction provides detailed information on the ride, including the

longitude/latitude coordinates of the origin and destination points, the starting and end time, the

unique driver ID, and the total fare. The objective of this analysis is to demonstrate the value that

may be captured in practice by employing the Lagrangian method.

We first partition the city by clustering the origin and destination points into 100 clusters

obtained from solving the k-center problem with the first few centers initialized with k-means

clustering centers. The Voronoi diagram of the cluster centers results in a partition with n = 100

locations; we show the Voronoi diagram and the ride flow based on the partition in Figure 11 in

Online Appendix G.3. To estimate model primitives, we assume a stationary demand arrival rate,

and deterministic relocation times and log-normal private values for each route (i, j). Since the data

only provides prices for requests that are fulfilled, we use prices as a rough approximation of the

consumers’ private values. We estimate the private value distribution parameters and the relocation

probabilities qij using the full data set, and estimate the number of drivers m by restricting to data

from January 2017 to February 2017, during which the system dynamics are quite stable. We
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approximate m with the number of active drivers in a 3-hour period and we choose m = 400, which

is roughly the average number of drivers from 8am to 4pm.

To select a good set of hubs, we vary the total number of hubs J from 1 to 6, and for each value,

we solve an integer linear program (18) to determine the specific locations to choose as hubs.

min
xij ,yi∈{0,1}

∑
i,j∈[n]:i 6=j

(
1− xij

)
· qij

s.t.

n∑
i=1

yi ≤ J,

xij ≤ yi + yj , ∀ i, j ∈ [n],∑
j:qij>0

xij ≥ 1,
∑

j:qji>0

xji ≥ 1, ∀ i ∈ [n].

(18)

In (18), yi = 1 if location i is a hub, and xij = 1 if request (i, j) is between hubs or between a

hub and a spoke. We minimize the sum of relocation probabilities of requests between two distinct

spokes to ensure the hubs cover most of the relocations. The first constraint enforces that at most

J hubs are selected. The second constraint imposes that xij = 1 only if either the origin or the

destination is a hub. The last constraint enforces that each spoke is connected to a hub. Figure 12

in Online Appendix G.3 illustrates the locations of hubs obtained from solving (18) with different

values of J .

For each fixed J , we calculate: (a) the Lagrangian relaxation upper bound V R, (b) the perfor-

mance (average revenue per request) of the Lagrangian policy V π(δ) with the optimal choice of δ

(which we denote by δ∗) and δ = 0 respectively, (c) the performance of a static policy πS(δ) with

the optimal choice of δ (which we denote by δ∗S). Optimal choices of δ for the dynamic policies are

roughly 160, 140, 140, 140, 140, and 160 for J from one to six; and of δ for the static policies are

roughly 20, 20, 40, 40, 40, and 60 for J from one to six. In Figure 13 in Online Appendix G.3,

we show how performance varies with δ for each value of J . The dynamic Lagrangian policy π(δ)

incorporates multiple hubs, spoke-to-spoke transitions, and travel times as discussed in Section 6.

The static policy πS(δ) is computed using a perturbed version of the Lagrangian relaxation de-

scribed in Section 5. Namely, we solve the a perturbed Lagrangian relaxation with some δ like

for dynamic pricing except that we enforce static controls in each spoke problem. Additionally,

we compute the fluid relaxation bound V F, and the performance of the fluid-based static policy

V (πF). These quantities are independent of the number of hubs J . In the fluid relaxation (13), we

additionally add the constraint that the number of resources in transit is no larger than m using
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J 1 2 3 4 5 6

V R (Lagrangian upper bound) 7.528 7.531 7.533 7.536 7.542 7.546

V π(δ∗) (dynamic policy) 7.161 7.135 7.114 7.095 7.078 7.059

V π(0) (dynamic policy) 6.892 6.881 6.883 6.845 6.842 6.823

V (πS(δ∗S)) (static policy) 6.915 6.896 6.885 6.892 6.881 6.873

V R−V π(δ∗)
V π(δ∗) (dynamic gap) 5.13% 5.55% 5.88% 6.23% 6.55% 6.90%

V R−V (πS(δ∗S))

V (πS(δ∗S))
(static gap) 8.87% 9.21% 9.42% 9.35% 9.60% 9.80%

Fluid Relaxations

V F (fluid upper bound) 7.692

V (πF) (fluid policy) 6.046

V F−V (πF)
V (πF)

(fluid gap) 27.22%

Table 1: Performance bounds and mean policy performances for the RideAustin example.

Little’s law, i.e.,
∑n

i=1

∑n
j=1 ηijdijτij ≤ m, as in Algorithm 5 of Banerjee et al. (2016).

Table 1 shows the simulation results. In general, there is a trade-off in choosing the optimal

number of hubs: a small number of hubs retains the benefits of dynamic pricing at the spokes,

while a large number of hubs guarantees that spoke-to-spoke flow is minimal. From the ride flow

of the RideAustin (Figure 12(b) in Online Appendix), the requests at the central location in the

Austin downtown dominates requests at other locations greatly, and this perhaps explains why

one hub is sufficient to cover a great amount of flow and achieve the best performance. Retaining

sufficient drivers in the hubs on average in the relaxation (i.e., δ = δ∗ for a fixed J) leads to a

substantial performance improvement compared to only ensuring that the drivers in the hubs to

be non-negative (i.e., δ = 0) in the relaxation. The best dynamic pricing policy leads to a gap of

5.13% compared to the gap of 27.22% for the fluid policy. The gap of the best Lagrangian-based

static policy is 8.87%, which substantially improves upon the fluid policy, but still underperforms

compared to the (dynamic) Lagrangian policy.

8 Conclusions

We have considered dynamic pricing of resources that relocate over a network, and developed an

approximate pricing policy and performance bound based on Lagrangian relaxations. We prove an

explicit bound on the suboptimality of this policy that shows the approach is asymptotically optimal

for hub-and-spoke networks with one hub or uniformly related hubs and with many locations and

resources. We have also shown how to extend the approach to more general networks with multiple
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hubs and spoke-to-spoke connections and how to incorporate nonzero relocation times. While we

have observed strong performance of this approach on numerical examples, ongoing work involves

developing theoretical performance guarantees for these more complex systems. Our model could be

further refined to include more realistic problem features, such as resources that periodically arrive

and depart the system and non-stationary arrival rates and revenue functions. Although these

features would potentially complicate a complete performance analysis, we believe the methods

developed in this paper would nonetheless work well with such variations of the problem. In general,

for policies from Lagrangian relaxations to perform well, we need the policy to behave similarly in

the original and relaxed problems and this requires that the constraint that is being relaxed to be

satisfied with high probability. To achieve this, we use a perturbed Lagrangian problem to push

the system toward the interior and away from the boundary of the constraint we relax. We are

optimistic that the perturbed Lagrangian could be useful in some other problems as well.

We are hopeful that supply-constrained large networks provide a suitable model of resource re-

location problems in practice. In principle, resource relocation problems can be studied in the large

supply regime by adopting network topologies in which nodes cover large geographical areas. These

coarse network topologies would guarantee a large supply of resources per location at the expense

of treating potentially distant resources as identical and interchangeable. Adopting finer network

topologies with many nodes allows us to capture spatial supply and demand more accurately as re-

sources within each node would be geographically closer. This is also consistent with insights from

the ride-sharing industry. For example, Uber7 indicates that “Deriving information and insights

from data in the Uber marketplace requires analyzing data across an entire city. Because cities are

geographically diverse, this analysis needs to happen at a fine granularity. Analysis at the finest

granularity, the exact location where an event happens, is very difficult and expensive. Analysis on

areas, such as neighborhoods within a city, is much more practical.”
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A Proofs

A.1 Proof of Proposition 2.1

Let N(T ) be the number of requests during time [0, T ]. Using the notation of Section 2.2, the
long-run average number of relocations per resource per unit time Φπ is

Φπ =
1

m
· lim
T→∞

E

{
1

T
·
N(T )∑
t=1

∑
i,j∈[n]

yij,t · 1
[
ξt ≤ dπij,t

]}

(i)
=

1

m
· E

{
lim
T→∞

1

T
·
N(T )∑
t=1

∑
i,j∈[n]

yij,t · 1
[
ξt ≤ dπij,t

]}

(ii)
=

∑
i,j∈[n] ηij

m
· E

{
lim
N→∞

1

N
·
N∑
t=1

∑
i,j∈[n]

yij,t · 1
[
ξt ≤ dπij,t

]}

(iii)
=

∑
i,j∈[n] ηij

m
lim
N→∞

1

N
· E

{
N∑
t=1

∑
i,j∈[n]

yij,t · dπij,t

}
︸ ︷︷ ︸

Θπ

,

where (i) follows from the generalized dominated convergence theorem (Theorem 19 in Royden and

Fitzpatrick 2010) because
∑

i,j∈[n] yij,t·1
[
ξt ≤ dπij,t

]
∈ [0, 1] and limT→∞ E

[
N(T )
T

]
= E

[
limT→∞

N(T )
T

]
,

(ii) from limT→∞
N(T )
T =

∑
i,j∈[n] ηij and limT→∞N(T ) = ∞, and (iii) from the bounded conver-

gence theorem. In the last equation, Θπ represents the expected throughput per period. Using
Θπ ≤ 1 and

∑
i,j∈[n] ηij ≤ η̄n, we have

Φπ ≤ η̄ n
m
.

For the other direction, let V π denote the long-run average revenue of policy π. We have

V π = lim
N→∞

1

N
· E

{
N∑
t=1

∑
i,j∈[n]

yij,t · rij
(
dπij,t

)}
≤ ω̄ · lim

N→∞

1

N
· E

{
N∑
t=1

∑
i,j∈[n]

yij,t · dπij,t

}
= ω̄ ·Θπ,

where the inequality is due to the mean value theorem and the facts that rij(0) = 0 and ω̄ > 0 is
a uniform bound on the derivatives of the one-period revenue functions by Assumption 2.1. Using
the above inequality on V π and

∑
i,j∈[n] ηij ≥ ηn, we obtain

Φπ ≥
ηV π

ω̄
· n
m
,

which completes the proof. The same result also holds with relocation times because incorporating
relocation times only affects the controls dπij,t (as resources are blocked while relocating), and we
can express resource utilization in terms of the controls as before.
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A.2 Proof of Proposition 2.2

Since the network topology of the hub-and-spoke structure is strongly connected and the one-period
revenue functions ri0(d) and r0i(d) are uniformly bounded by Assumption 2.1, Assumption 5.6.1
of Bertsekas (2012) holds. According to Proposition 5.6.2 of Bertsekas (2012), the average revenue
V OPT of an optimal policy does not depend on the initial state of the system, and moreover, there
exists a solution to the Bellman equation (2) if randomized controls are allowed. Since the one-
period revenue functions are concave, randomization does not improve performance and there must
be a solution to (2) with controls being deterministic. Thus (2) has a solution. Finally, according
to Proposition 5.6.1 of Bertsekas (2012), if d∗(x, s) attains the maximum in (2) for each state (x, s),
the stationary policy d∗(x, s) is optimal.

A.3 Proof of Proposition 3.1

It is easy to see that (3) decomposes over spokes with each spoke problem being

max
π∈Π

lim
T→∞

1

T
· E

{
T∑
t=1

(
yi0,t · ri0

(
dπi0,t

)
+ y0i,t · r0i

(
dπ0i,t

)
− λ · xπi,t

)}
s.t. xπi,t+1 = xπi,t − yi0,t · 1

[
ξt ≤ dπi0,t

]
+ y0i,t · 1

[
ξt ≤ dπ0i,t

]
, ∀ t ≥ 1,

0 ≤ xπi,t ≤ m, ∀ t ≥ 1.

(19)

We can interpret (19) as an average revenue problem for spoke i where in each time period, one
request arrives following the same request rates as in the original problem, and every resource in
spoke i incurs a holding cost λ. It is easy to see that Assumption 5.6.1 of Bertsekas (2012) holds for
the spoke problem. By the same argument as in the proof of Proposition 2.2, the optimal average
revenue hλi does not depend on the initial state of spoke i, and moreover, hλi together with some
differential value functions vλi (x, i, 0), vλi (x, 0, i), and vλi (x,∅) satisfies the Bellman equation (5).
Since (3) decomposes into (19), the optimal average revenue V̄ λ of the Lagrangian relaxation does
not depend on the initial state as well, and

V̄ λ = mλ+

n∑
i=1

hλi .

Finally, since every feasible policy to the original problem is feasible to the Lagrangian relaxation
and attains an objective value that is no smaller, we have V̄ λ ≥ V OPT.

A.4 Proof of Proposition 3.2

We first show that (6) is equivalent to the dual problem of the LP formulation of (5) in Section
A.4.1.
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A.4.1 Equivalence Between (5) and (6)

First, note that the optimal average revenue hλi in (5) can be solved by the following linear program
(20) following Section 5.5 of Bertsekas (2012).

min
hλi ,v

λ
i (x,i,0),

vλi (x,0,i),vλi (x,∅)

hλi

s.t. hλi + vλi (x, i, 0) ≥ ri0(d) + d · vλi (x− 1) + (1− d) · vλi (x)− λ · x,
∀ x ∈ [0 :m], d ∈ [0, 1 ∧ x],

hλi + vλi (x, 0, i) ≥ r0i(d) + d · vλi (x+ 1) + (1− d) · vλi (x)− λ · x,
∀ x ∈ [0 :m], d ∈ [0, 1 ∧ (m− x)],

hλi + vλi (x,∅) ≥ vλi (x)− λ · x, ∀ x ∈ [0 :m].

(20)

From Proposition 5.1.6 in Bertsekas (2012), any solution to (5) is an optimal solution to (20).
Problem (20) is a semi-infinite linear program (see Section 4 in Anderson and Nash 1987) with a
finite number of decision variables and infinitely many constraints.

According to Section 4.4 in Anderson and Nash (1987), the dual problem of (20) can be written
as

max
F

(i,0)
i,x (d)≥0,

F
(0,i)
i,x (d)≥0,

pi(x,∅),pi(x)≥0

m∑
x=0

{∫ 1

0
ri0(d) · dF (i,0)

i,x (d) +

∫ 1

0
r0i(d) · dF (0,i)

i,x (d)

}
− λ ·

m∑
x=0

x · pi(x)

s.t.

m∑
x=0

pi(x) = 1,

pi(x) · qi0 =

∫ 1

0
dF

(i,0)
i,x (d), ∀ x ∈ [0 :m],

pi(x) · q0i =

∫ 1

0
dF

(0,i)
i,x (d), ∀ x ∈ [0 :m],

pi(x) · (1− qi) = pi(x,∅), ∀ x ∈ [0 :m],

pi(x) = 1
[
x ≤ m− 1

]
·
∫ 1

0
d · dF (i,0)

i,x+1(d) + 1
[
x ≥ 1

]
·
∫ 1

0
d · dF (0,i)

i,x−1(d)

+

∫ 1

0
(1− d) · dF (i,0)

i,x (d) +

∫ 1

0
(1− d) · dF (0,i)

i,x (d) + pi(x,∅), ∀ x ∈ [0 :m],

F
(i,0)
i,0 (d) = pi(0) · qi0, ∀ d ∈ (0, 1],

F
(0,i)
i,m (d) = pi(m) · q0i, ∀ d ∈ (0, 1],

F
(i,0)
i,x (d), F

(0,i)
i,x (d) ∈M [0, 1], ∀ x ∈ [0 :m],

(21)

where M [0, 1] is the set of Lebesgue-Stieltjes measures on interval [0, 1] with every g(d) ∈M [0, 1] an

increasing and right-continuous function with g(0−) = 0. We can interpret the variables F
(i,0)
i,x (d)

and F
(0,i)
i,x (d) as the joint probability that x resources are in spoke i, a request (i, 0) or (0, i) arrives,

and the service provider selects a demand level no larger than d. pi(x,∅) is the probability that x
resources are in spoke i and the request is one of any other types, and pi(x) is the probability with

38



x resources in spoke i.
We now show (21) and (6) are equivalent. To see this, note that every feasible solution to (21)

represents a randomized control to the spoke problem. Specifically, at every state x with pi(x) > 0,

the provider selects a demand level according to the cumulative distribution F
(i,0)
i,x (d)/(qi0 ·pi(x)) if

a request (i, 0) arrives, and cumulative distribution F
(0,i)
i,x (d)/(q0i · pi(x)) if a request (0, i) arrives.

Since the one-period revenue functions ri0(d) and r0i(d) are concave, selecting the mean values

di(x, i, 0) =
∫ 1

0 d·dF
(i,0)
i,x (d)/(qi0 ·pi(x)) for a request (i, 0) and di(x, 0, i) =

∫ 1
0 d·dF

(0,i)
i,x (d)/(q0i ·pi(x))

for a request (0, i) can only be better. This implies that we can simply focus on deterministic
controls in (21), which corresponds to (6). Thus, (21) and (6) are equivalent.

Finally, if we let hλi > r̄ and all the differential values be zero, we get a feasible solution to (20)
with all constraints in (20) satisfied with strict inequality; thus strong duality holds according to
Theorem 1 of Section 8.6 in Luenberger (1997).

Finally we point out that, from the complementary slackness property elaborated in the same
theorem in Luenberger (1997), for all x ∈ [0 :m] with pi(x) > 0, we have:

hλi + vλi (x, i, 0) = ri0

(
di(x, i, 0)

)
+ di(x, i, 0) · vλi (x− 1) +

(
1− di(x, i, 0)

)
· vλi (x)− λ · x, (22)

hλi + vλi (x, 0, i) = r0i

(
di(x, 0, i)

)
+ di(x, 0, i) · vλi (x+ 1) +

(
1− di(x, 0, i)

)
· vλi (x)− λ · x, (23)

and
hλi + vλi (x,∅) = vλi (x)− λ · x, (24)

where hλi , vλi (x, i, 0), vλi (x, 0, i) and vλi (x,∅) is an optimal solution to (20) and pi(x), di(x, i, 0) and
di(x, 0, i) is an optimal solution to (6).

A.4.2 Equivalence Between (6) and (7)

From Lemma B.1, the support of the optimal probability distribution in (6) is Ii = [0 : Hi] for
some integer Hi ∈ N+. Introduce new variables βi(x) ≥ 0 for x ∈ [0 :m− 1] such that pi(x+ 1) =
βi(x) · pi(x). We can write (6) as

hλi = max
di(x,i,0)∈[0,1],
di(x,0,i)∈[0,1],
pi(x),βi(x)≥0

m∑
x=0

pi(x)

[
qi0 · ri0

(
di(x, i, 0)

)
+ q0i · r0i

(
di(x, 0, i)

)]
− λ ·

m∑
x=0

x · pi(x)

s.t.

m∑
x=0

pi(x) = 1,

pi(x) · βi(x) = pi(x+ 1), ∀ x ∈ [0 :m− 1],

q0i · di(x, 0, i) = βi(x) · qi0 · di(x+ 1, i, 0), ∀ x ∈ [0 :m− 1],

di(0, i, 0) = 0,

di(m, 0, i) = 0.

(25)
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The first part of the objective equals

m∑
x=0

pi(x)

[
qi0 · ri0

(
di(x, i, 0)

)
+ q0i · r0i

(
di(x, 0, i)

)]
(i)
=
m−1∑
x=0

{
pi(x) · q0i · r0i

(
di(x, 0, i)

)
+ pi(x+ 1) · qi0 · ri0

(
di(x+ 1, i, 0)

)}

=
m−1∑
x=0

pi(x)

[
q0i · r0i

(
di(x, 0, i)

)
+ βi(x) · qi0 · ri0

(
di(x+ 1, i, 0)

)]
,

(26)

where (i) is due to the constraints di(0, i, 0) = 0 and di(m, 0, i) = 0 and the fact that rij(0) =
0. According to (26) and the constraints of (25), given βi(x), it is easy to solve di(x, 0, i) and
di(x+ 1, i, 0) from the concave problem γi(β) in (8), which is

γi(β) = max
di0,d0i∈[0,1]

q0i · r0i(d0i) + β · qi0 · ri0(di0)

s.t. q0i · d0i = β · qi0 · di0.

Thus, (25) is equivalent to (27)

hλi = max
pi(x),βi(x)≥0

m−1∑
x=0

pi(x) · γi
(
βi(x)

)
− λ ·

m∑
x=0

x · pi(x)

s.t.

m∑
x=0

pi(x) = 1,

pi(x) · βi(x) = pi(x+ 1), ∀ x ∈ [0 :m− 1].

(27)

Eliminating βi(x) from (27) yields (7), which is

hλi = max
pi(x)≥0

m−1∑
x=0

pi(x) · γi

(
pi(x+ 1)

pi(x)

)
− λ ·

m∑
x=0

x · pi(x)

s.t.
m∑
x=0

pi(x) = 1,

where we set x · γi
(
y
x

)
= 0 if x = 0. Since the support of an optimal probability distribution in

(7) is a sequence of consecutive interprets starting from zero, an optimal solution to (7) can be
converted into a feasible solution to (27) and vice versa, thus the equivalence between (27) and
(7). Lemma A.3 shows that the function γi(β) is concave in β; this implies that (7) is a convex
optimization problem, as we show in Lemma A.1.

Lemma A.1. (7) is a convex optimization problem.

Proof. It suffices to show the objective of (7) is concave in pi(x). Since γi(β) is concave in β by
Lemma A.3 and x · γi

( y
x

)
is the perspective of γi(β), x · γi

( y
x

)
is jointly concave in (x, y) from

Section 3.2.6 of Boyd and Vandenberghe (2004). This implies that the objective of (7) is concave
in pi(x).

We can solve (7) efficiently with multiple methods. In Section A.4.3, we provide an specialized
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algorithm for solving (7) through its first-order optimality conditions. We provide some useful
properties for γi(β) as a preparation.

Lemma A.2. γi(β) is increasing in β ∈ R+.

Proof. We show that for any 0 ≤ β1 < β2, we have γi(β1) ≤ γi(β2). Let d1
i0 and d1

0i be an optimal
solution to γi(β1). We have q0i · d1

0i = β1 · qi0 · d1
i0. It is easy to see that d1

0i and β1

β2
d1
i0 is feasible to

γi(β2). Thus,

γi(β2) ≥ q0i · r0i(d
1
0i) + β2 · qi0 · ri0

(β1

β2
d1
i0

)
(i)

≥ q0i · r0i(d
1
0i) + β2 · qi0 ·

β1

β2
· ri0

(
d1
i0

)
= γi(β1),

where (i) is due to ri0

(
β1

β2
d1
i0

)
≥ β1

β2
· ri0

(
d1
i0

)
because ri0(d) is concave and ri0(0) = 0.

Lemma A.3. γi(β) is strictly concave in β ∈ R+.

Proof. For any 0 ≤ β1 < β2 and α1, α2 ∈ (0, 1) with α1 + α2 = 1, we let β = α1 · β1 + α2 · β2 and
show that γi(β) > α1 · γi(β1) + α2 · γi(β2).

Let d1
i0 and d1

0i be an optimal solution to γi(β1), and d2
i0 and d2

0i an optimal solution to γi(β2).
Since q0i · d1

0i = β1 · qi0 · d1
i0 and q0i · d2

0i = β2 · qi0 · d2
i0, it is easy to see that d0i = α1 · d1

0i + α2 · d2
0i

and di0 = (α1 · β1 · d1
i0 + α2 · β2 · d2

i0)/(α1 · β1 + α2 · β2) is feasible to γi(β). Thus,

γi(β) ≥ q0i · r0i

(
α1 · d1

0i + α2 · d2
0i

)
+ β · qi0 · ri0

(
α1 · β1 · d1

i0 + α2 · β2 · d2
i0

α1 · β1 + α2 · β2

)
> q0i ·

(
α1 · r0i(d

1
0i) + α2 · r0i(d

2
0i)
)

+ qi0 ·
(
α1 · β1 · ri0(d1

i0) + α2 · β2 · ri0(d2
i0)
)

= α1 · γi(β1) + α2 · γi(β2)

where the second inequality is due to the strict concavity of the revenue functions and Jensen’s
inequality.

For ease of exposition, in the following, we assume that γi(β) is differentiable in β; otherwise,
we can simply replace the derivatives of γi(β) with its sub-gradients in the analysis.

Lemma A.4. γi(β) and its derivatives are bounded from above: 0 = γi(0) ≤ γi(β) ≤ q0i · (r̄ + ω̄),
and 0 ≤ γ′i(β) ≤ γ′i(0) ≤ qi0 · (r̄ + ω̄).

Proof. It is easy to see from (8) that γi(0) = 0. Moreover, the objective of (8) satisfies that

q0i · r0i(d0i) + β · qi0 · ri0(di0)

≤q0i · r̄ + β · qi0 · di0 · ω̄
≤q0i · (r̄ + ω̄),

where the first inequality is due to the mean value theorem and the facts that ri0(0) = 0 and that
ω̄ is the uniform bound on the derivatives of rij(d) by Assumption 2.1. Thus γi(β) ≤ q0i · (r̄ + ω̄).
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Finally, note that

γi(β)
(i)

≤ q0i · d0i · ω̄ + β · qi0 · r̄
(ii)

≤ β · qi0 · (r̄ + ω̄),

where (i) is from r0i(d0i) ≤ d0i · ω̄ and (ii) from q0i · d0i = β · qi0 · di0 ≤ β · qi0. We have

γ′i(0+) = lim
β→0

γi(β)− γi(0)

β
= lim

β→0

γi(β)

β
≤ qi0 · (r̄ + ω̄).

The remaining of Lemma A.4 is directly from Lemmas A.2 and A.3.

Lemma A.5. Let z(β) = β · γ′i(β)− γi(β) be a function of β ∈ R+. z(β) is strictly decreasing in β
and z(0) = 0.

Proof. z(0) = 0 because γi(0) = 0 and γ′i(0) is bounded from Lemma A.4. To see that z(β) is
strictly decreasing in β, for any 0 ≤ β1 < β2 we have

z(β1)− z(β2) = γi(β2)− γi(β1) + β1 · γ′i(β1)− β2 · γ′i(β2)

=
{
γi(β2)− γi(β1)− γ′i(β2) · (β2 − β1)

}
+ β1 ·

(
γ′i(β1)− γ′i(β2)

)
≥ γi(β2)− γi(β1)− γ′i(β2) · (β2 − β1)

> 0,

where the first inequality is because γ′i(β1)− γ′i(β2) ≥ 0 by the concavity of γi(β), and the second
inequality is due to the first-order condition of the strictly concave function γi(β).

A.4.3 A Specialized Algorithm to Solve (7)

Since (7) is a convex program and all constraints are linear, strong duality holds. Let f(p) =∑m−1
x=0 px ·γi

(
px+1

px

)
−λ ·

∑m
x=0 x ·px with p = (px)x∈[0:m] ∈ Rm+1

+ denote the objective of (7). Relax

the equality constraint
∑m

x=0 pi(x) = 1 with a dual variable r ∈ R and let L(p, r) = f(p) + r · (1−∑m
x=0 px) denote the corresponding Lagrangian function and r∗ denote the Lagrange multiplier.

Proposition A.6 provides the optimality condition for (7).

Proposition A.6. The following hold for (7).

1. The derivative of f is ∂f/∂px = −λ · x+ γ′i

(
px
px−1

)
· 1
[
x ≥ 1

]
− z
(
px+1

px

)
· 1
[
x ≤ m− 1

]
;

2. p = (px)x∈[0:m] ∈ Rm+1
+ is optimal to (7) and r ∈ R is a Lagrange multiplier if and only if

(a) p is feasible to (7), and (b) ∂f
∂px

= r for all px > 0 and ∂f
∂px
≤ r for all px = 0;

3. The Lagrange multiplier r∗ = hλi equals the optimal value of (7).

Proof. Part 1 can be verified directly. Part 2 is from Proposition 6.2.5 in Bertsekas et al. (2003).
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For part 3, suppose p = (px)x∈[0:m] is an optimal solution to (7) with support [0 :H]. We have

r∗ =
∑

x∈[0:H]

px · r∗
(i)
=

∑
x∈[0:H]

px ·
(
∂f

∂px

)
(ii)
= −λ

∑
x∈[0:H]

px · x+
∑

x∈[1:H]

px · γ′i

(
px
px−1

)
−
H

∧
(m−1)∑
x=0

px+1 · γ′i

(
px+1

px

)
+

H
∧

(m−1)∑
x=0

px · γi

(
px+1

px

)

(iii)
= −λ

∑
x∈[0:H]

px · x+

H
∧

(m−1)∑
x=0

px · γi

(
px+1

px

)
(iv)
= f(p) = hλi ,

where (i) is from part 2, (ii) from part 1 and the definition of z(β) = β · γ′i(β) − γi(β), (iii) from

pH+1 = 0 and thus
∑H

∧
(m−1)

x=0 px+1 · γ′i
(
px+1

px

)
=
∑H

x=1 px · γ′i
(

px
px−1

)
, and (iv) from the fact that

px = 0 for all x > H.

Lemma A.7 provides a bisection method to solve the optimality condition in Proposition A.6
part 2 efficiently.

Lemma A.7. For any r ≥ 0, let

m∗ =


0 if γ′i(0) ≤ λ+ r,
m if γ′i(0) > λm+ r,

dν − 1e otherwise,

with ν =
γ′i(0)−r

λ and dxe denoting the minimum integer that is no smaller than x.8 Let βx = 0 for
all x ≥ m∗. If m∗ ≥ 1, set βm∗−1 to be the value that satisfies

γ′i
(
βm∗−1

)
= λm∗ + r, (28)

and set βx for x ≤ m∗ − 2 recursively in the backward manner with9

γ′i

(
βx

)
= z
(
βx+1

)
+ r + λ(x+ 1), (29)

where z(β) is defined in Lemma A.5. We have

1. βx is decreasing in x: β0 ≥ · · · ≥ βm∗−1 > 0 = βm∗ = · · · = βm−1; and

2. if r + z(β0) = 0, r = r∗ and the probabilities pi(x) that satisfy pi(x + 1) = βx · pi(x) for all

x ∈ [0 :m− 1] are optimal to (7); and

3. r > r∗ if r + z(β0) > 0 and r < r∗ if r + z(β0) < 0.

From Lemma A.7 parts 2 and 3, we can solve the Lagrange multiplier r∗ = hλi using a bisection
method. Moreover, letting β∗x be the values from (28) and (29) with r = r∗, the probabilities p∗i (x)

8Equivalently, in case 3, m∗ is the unique integer satisfying λm∗ + r < γ′i(0) ≤ λ(m∗ + 1) + r.
9If the right-hand side value of (29) is non-positive, return r < r∗.
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that satisfy p∗i (x+ 1) = β∗x · p∗i (x) for all x ∈ [0 :m− 1] are optimal to (7). Since

p∗i (x) =

(
x−1∏
y=0

β∗y

)
· p∗i (0), ∀ x ∈ [m], (30)

and these probabilities sum up to one, we have

p∗i (0) =

(
1 +

m∑
x=1

x−1∏
y=0

β∗y

)−1

. (31)

From (30) and (31), we can compute p∗i (x) for all x ≤ m. Finally, since the ratios β∗x are decreasing
in x ∈ [0 :m− 1] from Lemma A.7 part 1, the probability distribution p∗i (x) is discrete log-concave
as defined in Definition B.1; this is the unique solution to (6) according to Proposition B.8.

Proof of Lemma A.7. Part 1: we prove by induction. As a base case, βm∗−1 ≥ βm∗ = 0 and βm∗−1

satisfies (29) because βm∗ = 0, z(0) = 0 by Lemma A.5, and (28). Now for any x ≤ m∗ − 2, we
have

γ′i

(
βx

)
(a)
= z

(
βx+1

)
+ r + λ(x+ 1)

= z
(
βx+1

)
+ r + λ(x+ 2)− λ

(b)
= z

(
βx+1

)
− z
(
βx+2

)
+ γ′i

(
βx+1

)
− λ

(c)

≤ γ′i

(
βx+1

)
,

where (a) and (b) are because (29) holds at x and x + 1, and (c) is from the facts that λ ≥ 0,
z(β) is decreasing in β by Lemma A.5, and βx+1 ≥ βx+2 by assumption. Since γi(β) is concave by
Lemma A.3, we have βx ≥ βx+1.

Part 2: this is essentially verifying the optimality condition as in Proposition A.6 part 2. Note
that from Proposition A.6 part 1, the derivatives of the objective f only depend on the ratios
βx = px+1

px
. If r+z(β0) = 0, it is easy to check that the probabilities pi(x) with pi(x+1) = βx ·pi(x)

for all x ≤ m − 1 and the value r satisfy the optimality condition in Proposition A.6 part 2, with
∂f
∂px

= r for all x ≤ m∗ and ∂f
∂px
≤ r for all x ≥ m∗ + 1. Thus, pi(x) are optimal to (7) and r = r∗

equals the Lagrange multiplier.
Part 3: let βx(r) for all 0 ≤ x ≤ m − 1 and m∗(r) denote the values of βx and m∗ with a

specific r. Since z(β) is decreasing in β from Lemma A.5, it suffices to show βx(r) is decreasing in
r for all 0 ≤ x ≤ m − 1, which we will prove by induction. Clearly, m∗(r) decreases in r. Thus,
for any r1 > r2, βx(r1) ≤ βx(r2) for all x ≥ m∗(r1). Now, for any x ≤ m∗(r1) − 1, suppose that
βx+1(r1) ≤ βx+1(r2). We have

γ′i

(
βx(r1)

)
(i)
= z

(
βx+1(r1)

)
+ r1 + λ(x+ 1)

(ii)

≥ z
(
βx+1(r2)

)
+ r2 + λ(x+ 1)

(iii)
= γ′i

(
βx(r2)

)
,

where (i) and (iii) are from (29) and (ii) is from the facts that z(β) is decreasing in β by Lemma
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A.5, βx+1(r1) ≤ βx+1(r2), and r1 > r2. Thus, βx(r1) ≤ βx(r2) because γi(β) is concave by Lemma
A.3.

A.5 Proof of Proposition 3.3

Let hλi , vλi (x, i, 0), vλi (x, 0, i) and vλi (x,∅) be an optimal solution to (20). By the complementary
slackness properties in (22)-(24) and the fact that Ii is closed under the Lagrangian policy by
Proposition B.2, for all resource levels x ∈ Ii = [0 :Hi] we have

hλi + vλi (x, i, 0) = max
d∈[0,1∧x]

{
ri0(d) + d ·

(
vλi (x− 1)− vλi (x)

)}
+ vλi (x)− λ · x,

hλi + vλi (x, 0, i) = max
d∈[0,1∧(Hi−x)]

{
r0i(d) + d ·

(
vλi (x+ 1)− vλi (x)

)}
+ vλi (x)− λ · x,

hλi + vλi (x,∅) = vλi (x)− λ · x,

(32)

and the controls di(x, i, 0) and di(x, 0, i) of the Lagrangian policy attain the maximum in (32). We
can interpret the Bellman equation (32) as an average revenue problem with states restricted to be
in set Ii. Lemma A.8 shows the differential value functions in (32) are concave in x.

Lemma A.8. The differential value functions vλi (x, i, 0), vλi (x, 0, i) and vλi (x,∅) in (32) are concave
in x for x ∈ Ii.

We defer proof of Lemma A.8 to the end of this section. Let ∆vλi (x) = vλi (x) − vλi (x − 1) be
the difference of the average differential values of two adjacent states. Lemma A.8 implies that
∆vλi (x) is decreasing in x for x ≤ Hi. Since the one-period revenue functions ri0(d) and r0i(d)
are strictly concave, the demand levels di(x, i, 0) and di(x, 0, i) that attain the maximum in (32)
are unique. Moreover, since di(x, i, 0) = argmaxd∈[0,1∧x]

{
ri0(d) − d · ∆vλi (x)

}
and the objective

has increasing differences in d and −∆vλi (x), by the theory of monotone comparative statics (e.g.,
Topkis 1978, Milgrom and Shannon 1994, Topkis 2011), the unique optimal solution is increasing
in x ∈ Ii because −∆vλi (x) is increasing in x for x ≤ Hi and di(0, i, 0) = 0. Similar analysis implies
the demand level di(x, 0, i) = argmaxd∈[0,1∧(Hi−x)]

{
r0i(d) + d ·∆vλi (x+ 1)

}
is decreasing in x ∈ Ii.

Proof of Lemma A.8. Since the Lagrangian policy is optimal to (32) and is a unichain policy by
Lemma B.1, Proposition 5.2.4 of Bertsekas (2012) implies that the differential value functions in
(32) are unique up to a constant.

We now show the differential value functions are concave using a value iteration argument. Let

vλi =
{
vλi (x, s) : x ∈ Ii, s ∈

{
(1, 0), (0, 1),∅

}}
be a set of value functions for states in the problem

(32), and let Tvλi be the one-step iteration with vλi being the terminal values, i.e.,

Tvλi (x, i, 0) = max
d∈[0,1∧x]

{
ri0(d) + d ·

(
vλi (x− 1)− vλi (x)

)}
+ vλi (x)− λ · x,

Tvλi (x, 0, i) = max
d∈[0,1∧(Hi−x)]

{
r0i(d) + d ·

(
vλi (x+ 1)− vλi (x)

)}
+ vλi (x)− λ · x,

Tvλi (x,∅) = vλi (x)− λ · x,

(33)

for all x ∈ Ii, with vλi (x) = qi0 · vλi (x, i, 0) + q0i · vλi (x, 0, i) + (1 − qi) · vλi (x,∅) being the average
terminal values over request types. Lemma A.9 shows that the map T preserves concavity.
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Lemma A.9. If the value function vλi =
{
vλi (x, s) : x ∈ Ii, s ∈

{
(1, 0), (0, 1),∅

}}
is concave in x,

the one-step iteration Tvλi is concave in x as well.

Proof. The proof is standard (e.g., Proposition 5.2 of Talluri and Van Ryzin 2006) but we include
it for completeness. Let ∆vλi (x) = vλi (x)− vλi (x− 1) for x ≤ Hi be the difference of average values
of two adjacent states. By assumption ∆vλi (x) is decreasing in x. Let

♣ :=

{
Tvλi (x+ 2, i, 0)− Tvλi (x+ 1, i, 0)

}
−
{
Tvλi (x+ 1, i, 0)− Tvλi (x, i, 0)

}
.

We need to show that ♣ ≤ 0. Let di(x, i, 0) and di(x, 0, i) be the demand levels that attain the
maximum in (33). From (33), for any x ≥ 0 we have

♣ = ∆vλi (x+ 2)−∆vλi (x+ 1)

+

{
ri0

(
di(x+ 2, i, 0)

)
− di(x+ 2, i, 0) ·∆vλi (x+ 2)

}
−
{
ri0

(
di(x+ 1, i, 0)

)
− di(x+ 1, i, 0) ·∆vλi (x+ 1)

}
−
{
ri0

(
di(x+ 1, i, 0)

)
− di(x+ 1, i, 0) ·∆vλi (x+ 1)

}
+

{
ri0

(
di(x, i, 0)

)
− di(x, i, 0) ·∆vλi (x)

}
.

Since di(x+ 1, i, 0) attains the maximum in (33),

ri0

(
di(x+ 1, i, 0)

)
− di(x+ 1, i, 0) ·∆vλi (x+ 1) ≥ ri0

(
di(x, i, 0)

)
− di(x, i, 0) ·∆vλi (x+ 1)

and

ri0

(
di(x+ 1, i, 0)

)
− di(x+ 1, i, 0) ·∆vλi (x+ 1) ≥ ri0

(
di(x+ 2, i, 0)

)
− di(x+ 2, i, 0) ·∆vλi (x+ 1).

Thus,

♣ ≤ ∆vλi (x+ 2)−∆vλi (x+ 1)

+

{
ri0

(
di(x+ 2, i, 0)

)
− di(x+ 2, i, 0) ·∆vλi (x+ 2)

}
−
{
ri0

(
di(x+ 2, i, 0)

)
− di(x+ 2, i, 0) ·∆vλi (x+ 1)

}
−
{
ri0

(
di(x, i, 0)

)
− di(x, i, 0) ·∆vλi (x+ 1)

}
+

{
ri0

(
di(x, i, 0)

)
− di(x, i, 0) ·∆vλi (x)

}
=
(

1− di(x+ 2, i, 0)
)(

∆vλi (x+ 2)−∆vλi (x+ 1)
)

+ di(x, i, 0)
(

∆vλi (x+ 1)−∆vλi (x)
)

≤ 0,

where the last inequality follows because ∆vλi (x) is decreasing in x and demand levels are between
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zero and one. This implies Tvλi (x, i, 0) is concave in x. The same analysis on Tvλi (x, 0, i) implies
Tvλi (x, 0, i) is concave in x as well. Finally, Tvλi (x,∅) is concave in x because Tvλi (x,∅) = vλi (x)−
λ · x and vλi (x) is concave in x.

Lemma A.9 and the convergence of value iteration in the proof of Proposition 5.6.2 in Bertsekas
(2012) imply that the differential value functions in (32) are concave in x.

A.6 Proof of Proposition 3.4

According to Danskin’s Theorem (Proposition 4.5.1 in Bertsekas et al. 2003), the fact that the
optimal probability distribution to (6) is unique (see Proposition B.8), and Proposition 4.2.4 in
Bertsekas et al. (2003), the sub-differential of V̄ λ at any λ ≥ 0 is a singleton

∂V̄ λ =
{
m−

n∑
i=1

m∑
x=0

x · pi(x) : pi(x) is optimal to (6) with λ
}
. (34)

Thus by standard optimality conditions for convex optimization (Proposition 4.7.2 in Bertsekas
et al. 2003), the dual variable λ∗ is an optimal solution to (9) if and only if

n∑
i=1

m∑
x=0

x · pi(x) ≤ m,

λ∗ ≥ 0,

λ∗ ·

(
m−

n∑
i=1

m∑
x=0

x · pi(x)

)
= 0,

pi(x) is an optimal solution to (6) with λ∗,

which we can equivalently write as (10).

A.7 Proof of Lemma 4.2

First, we show that λ∗(δ) ≤ r̄/(m − δ) if δ < m. Since λ∗(δ) is an optimal solution to (11),

V R(δ) = (m− δ) · λ∗(δ) +
∑n

i=1 h
λ∗(δ)
i . It then suffices to show V R(δ) ≤ r̄ and hλi ≥ 0 for all spokes

i ∈ [n] and dual variables λ ≥ 0.
First, the optimality condition of (11) implies that (11) is equivalent to the problem of max-

imizing the average revenue subject to the constraint that the hub has at least δ resources in
expectation. Since r̄ is the uniform bound on the one-period revenue functions, V R(δ) ≤ r̄. Second,
hλi is equal to the optimal value of (6) by Proposition 3.2. Let pi(0) = 1, pi(x) = 0 for all x ≥ 1,
di(x, 0, i) = 0 for all x, and di(x, i, 0) = 1 for all x ≥ 1. This provides a feasible solution to (6) with
an objective value of zero, thus hλi ≥ 0.

Combining the fact that λ∗(δ) ≤ r̄/(m− δ) with (12) leads to the result.

A.8 Proof of Lemma 4.3

We prove the result by first showing that the value function of the Lagrangian policy in the relaxed
system approximately solves the Bellman equation of the original system along the path induced
by the Lagrangian policy in the original system. We then use a verification theorem to bound the
total loss between these two systems. Finally, we extend to infinite horizon settings using a value
iteration argument.
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Step 1 (approximate Bellman equation). Let vi,t(x, i, 0), vi,t(x, 0, i) and vi,t(x,∅) denote the
value functions of the Lagrangian policy in each spoke i problem, with x resources and t time
periods ahead, and the request type being (i, 0), (0, i), or one of any other types, respectively. Let
vi,t(x) = qi0 · vi,t(x, i, 0) + q0i · vi,t(x, 0, i) + (1 − qi) · vi,t(x,∅) be the average value functions over
request types. The Bellman equation for each spoke problem with the Lagrangian policy is

vi,t(x, i, 0) = ri0
(
di(x, i, 0)

)
+ di(x, i, 0) ·

(
vi,t−1(x− 1)− vi,t−1(x)

)
+ vi,t−1(x),

vi,t(x, 0, i) = r0i

(
di(x, 0, i)

)
+ di(x, 0, i) ·

(
vi,t−1(x+ 1)− vi,t−1(x)

)
+ vi,t−1(x),

vi,t(x,∅) = vi,t−1(x),

(35)

for all x ∈ [0 : m], where di(x, i, 0) and di(x, 0, i) are the demand values of the Lagrangian policy.
Let ∆vi,t(x) = vi,t(x) − vi,t(x − 1) for x ∈ [m] be the difference of the continuation values of two
adjacent states. Lemma A.10 shows that ∆vi,t(x) ≤ ω̄ are uniformly bounded from above by the
derivative bound ω̄ as defined in Assumption 2.1.

Lemma A.10. The difference of the continuation values ∆vi,t(x) satisfies ∆vi,t(x) ≤ ω̄ for all spokes
i, time periods t, and resource levels x ∈ [m], where ω̄ is the uniform bound on the derivatives of
the one-period revenue functions as defined in Assumption 2.1.

We prove Lemma A.10 at the end of this section. Let V R
t (x, s) and Vt(x, s) denote the contin-

uation values of the Lagrangian policy in the relaxed and the original systems, with x = (xi)i∈[n]

being the state of resources and s being the request type. Let V R
t (x) = Es

[
V R
t (x, s)

]
and Vt(x) =

Es
[
Vt(x, s)

]
denote the average values over request types. The boundary conditions of the two

systems are V R
0 (x, s) = V0(x, s) = 0. Because we relax the capacity constraint of the hub in the

relaxed system, V R
t (x) decouples over spokes with

V R
t (x) =

n∑
i=1

vi,t(xi), (36)

where vi,t(x) are the average value functions of spoke i as in (35).
The Lagrangian policy takes different actions in the two systems at the same state (x, s) only

when x0 = 0, s = (0, i), and xi ≤ m− 1 for some spoke i ∈ [n]; let

A =
{

(x, s) : x0 = 0, s = (0, i), xi ≤ m− 1, i ∈ [n]
}

be the set of states in which the policy can take different actions. Let R(x, s) be the expected
one-period revenue in the original system at state (x, s) ∈ X ×

{
(i, 0), (0, i) : i ∈ [n]

}
, i.e.,

R(x, i, 0) = ri0

(
di(xi, i, 0)

)
,

R(x, 0, i) = r0i

(
di(xi, 0, i)

)
·
(

1− 1
[
(x, 0, i) ∈ A

])
.

(37)

Moreover, let

R̄t(x, s) = V R
t (x, s)−R(x, s)− E

[
V R
t−1(x̃, s̃)

∣∣∣x, s] , (38)

where the expectation is taken with respect the random variable (x̃, s̃), which is the next state in
the original system under the Lagrangian policy when the current state is (x, s). This value can
be interpreted as the ex-ante compensation that needs to be given to the provider in the relaxed
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system at state (x, s) in order for her to be willing to switch from the current action to the action
in the original system.

Fix a state (x, s) of the original system. We can write the value function of the relaxed system
as follows:

V R
t (x, s) = 1

[
(x, s) 6∈ A

]
· V R

t (x, s) + 1
[
(x, s) ∈ A

]
· V R

t (x, s)

= 1
[
(x, s) 6∈ A

]
·
(
R(x, s) + E

[
V R
t−1(x̃, s̃)

∣∣∣x, s])
+ 1

[
(x, s) ∈ A

]
·
(
R(x, s) + E

[
V R
t−1(x̃, s̃)

∣∣∣x, s] + R̄t(x, s)
)

= R(x, s) + E
[
V R
t−1(x̃, s̃)

∣∣∣x, s]+ 1
[
(x, s) ∈ A

]
· R̄t(x, s)︸ ︷︷ ︸

εt

,

where the second equation follows from the Bellman equation for the relaxed system together with
the fact that the evolution in the relaxed and original system coincide for all states not in A and
using (38). We proceed by bounding the terms εt. Let z(s) be the index of the spoke involved in
type s and let n(x, s) be the resource level of spoke z(s) when the state of resources is x. We have

εt = 1
[
(x, s) ∈ A

]
· R̄t(x, s)

(i)
= 1

[
(x, s) ∈ A

]
·
(
V R
t (x, s)− E

[
V R
t−1(x̃, s̃)

∣∣∣x, s])
(ii)
= 1

[
(x, s) ∈ A

]
·
(
V R
t (x, s)− V R

t−1(x)
)

(iii)
= 1

[
(x, s) ∈ A

]
·
[
rs

(
dz(s)

(
n(x, s), s

))
+ dz(s)

(
n(x, s), s

)
·∆vz(s),t−1

(
n(x, s) + 1

)]
(iv)

≤ 1
[
(x, s) ∈ A

]
·
(
r̄ + ω̄

)
where (i) follows from (38) and the fact that R(x, s) = 0 when (x, s) ∈ A by (37), (ii) from x̃ = x
when (x, s) ∈ A, (iii) from the Bellman equation of V R

t (x, s), the fact that the value function
decomposes over spokes by (36) and the transition only involves s = (0, i), (iv) from the definition
of r̄ in Assumption 2.1 and Lemma A.10. Putting everything together, we obtain that the value
function for the relaxed system satisfies the following approximate Bellman equation in the original
system

V R
t (x, s) ≤ R(x, s) + E

[
V R
t−1(x̃, s̃)

∣∣∣x, s]+ 1
[
(x, s) ∈ A

]
·
(
r̄ + ω̄

)
. (39)

Step 2 (verification). Let {xτ , sτ}τ≤t be the path of states of the original system with the La-
grangian policy. By taking expectations over the states {xτ , sτ}τ<t and using the boundary condi-
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tion on the value function we have

V R
t (xt, st) = E

[
t∑

τ=1

V R
τ (xτ , sτ )− V R

τ−1(xτ−1, sτ−1)

]
(i)
= E

[
t∑

τ=1

V R
τ (xτ , sτ )− E

[
V R
τ−1(x̃, s̃)|xτ , sτ

]]
(ii)

≤ E

[
t∑

τ=1

R(xτ , sτ )

]
+
(
r̄ + ω̄

) t∑
τ=1

P
[
(xτ , sτ ) ∈ A

]
(iii)
= Vt(xt, st) +

(
r̄ + ω̄

) t∑
τ=1

P
[
(xτ , sτ ) ∈ A

]
(iv)

≤ Vt(xt, st) +
(
r̄ + ω̄

) t∑
τ=1

P
[
x0,τ = 0

]
,

(40)

where the (i) follows by the tower rule for conditional expectations and using the fact that the
dynamics are Markovian, (ii) follows from (39) over τ ∈ [t] together with linearity of expectations,
(iii) because R(xτ , sτ ) is the expected one-period revenue in the original system at state (xτ , sτ ),
and (iv) because A ⊆

{
(x, s) : x0 = 0

}
.

Step 3 (value iteration). Taking an average over t time periods and letting t go to infinity gives

V R(δ)
(a)
= lim

t→∞

1

t
V R
t (xt, st)

(b)

≤ lim
t→∞

1

t

(
Vt(xt, st) + (r̄ + ω̄) ·

t∑
τ=1

P[x0,τ = 0]
)

(c)
= V π(δ) + (r̄ + ω̄) · P

[
X0(δ) = 0

]
,

where (a) is due to the fact that the long-run time average of the total revenue converges to the
average revenue of the policy by a value iteration argument (see Proposition 5.3.1 in Bertsekas
2012), (b) is from (40), and (c) from the same value iteration argument and the fact that the time-
average limiting distribution converges to the stationary distribution because the Markov chain has
a single recurrent class by Corollary B.11.

Proof of Lemma A.10. According to Proposition 3.3, the demand values of the Lagrangian policy
are monotone in the resource levels of the spokes: for each spoke i and for all x ∈ [m], we have
0 ≤ di(x, 0, i) ≤ di(x− 1, 0, i) ≤ 1 and 0 ≤ di(x− 1, i, 0) ≤ di(x, i, 0) ≤ 1. By coupling the private
value of the arriving request when the number of resources is x−1 and x respectively, we can write
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the difference of the continuation values ∆vi,t(x) in following recursive way:

∆vi,t(x) = q0i

{(
1− di(x− 1, 0, i)

)
·∆vi,t−1(x)

+
(
di(x− 1, 0, i)− di(x, 0, i)

)
·
(
−G0i

(
di(x− 1, 0, i)

))
+ di(x, 0, i) ·

(
−G0i

(
di(x− 1, 0, i)

)
+G0i

(
di(x, 0, i)

)
+ ∆vi,t−1(x+ 1)

)}
+ qi0

{(
1− di(x, i, 0)

)
·∆vi,t−1(x)

+
(
di(x, i, 0)− di(x− 1, i, 0)

)
·Gi0

(
di(x, i, 0)

)
+ di(x− 1, i, 0) ·

(
−Gi0

(
di(x− 1, i, 0)

)
+Gi0

(
di(x, i, 0)

)
+ ∆vi,t−1(x− 1)

)}
+
(

1− qi
)
·∆vi,t−1(x)

= q0i

(
r0i

(
di(x, 0, i)

)
− r0i

(
di(x− 1, 0, i)

)
+ di(x, 0, i) ·∆vi,t−1(x+ 1)

)
+ qi0

(
ri0
(
di(x, i, 0)

)
− ri0

(
di(x− 1, i, 0)

)
+ di(x− 1, i, 0) ·∆vi,t−1(x− 1)

)
+
(

1− q0i · di(x− 1, 0, i)− qi0 · di(x, i, 0)
)

∆vi,t−1(x),

(41)

with boundary conditions ∆vi,0(x) = 0 for all x.
We prove by induction. Clearly this is true for t = 0 by the boundary conditions that ∆vi,0(x) =

0. Now suppose ∆vi,t−1(x) ≤ ω̄ for all spokes i and resource levels x. We show that ∆vi,t(x) ≤ ω̄.
From (41) we have

∆vi,t(x) ≤ q0i

(
r0i

(
di(x, 0, i)

)
− r0i

(
di(x− 1, 0, i)

))
+ q0i · di(x, 0, i) · ω̄

+ qi0

(
ri0
(
di(x, i, 0)

)
− ri0

(
di(x− 1, i, 0)

))
+ qi0 · di(x− 1, i, 0) · ω̄

+
(

1− q0i · di(x− 1, 0, i)− qi0 · di(x, i, 0)
)
· ω̄.

To show ∆vi,t(x) ≤ ω̄, it suffices to show that

q0i

(
r0i

(
di(x, 0, i)

)
− r0i

(
di(x− 1, 0, i)

))
+ qi0

(
ri0
(
di(x, i, 0)

)
− ri0

(
di(x− 1, i, 0)

))
≤

{
q0i

(
di(x− 1, 0, i)− di(x, 0, i)

)
+ qi0

(
di(x, i, 0)− di(x− 1, i, 0)

)}
· ω̄.

This is true because the left-hand side satisfies that

q0i

(
r0i

(
di(x, 0, i)

)
− r0i

(
di(x− 1, 0, i)

))
+ qi0

(
ri0
(
di(x, i, 0)

)
− ri0

(
di(x− 1, i, 0)

))
≤ q0i

∣∣∣∣∣r0i

(
di(x, 0, i)

)
− r0i

(
di(x− 1, 0, i)

)∣∣∣∣∣+ qi0

∣∣∣∣∣ri0(di(x, i, 0)
)
− ri0

(
di(x− 1, i, 0)

)∣∣∣∣∣
≤

{
q0i

(
di(x− 1, 0, i)− di(x, 0, i)

)
+ qi0

(
di(x, i, 0)− di(x− 1, i, 0)

)}
· ω̄,
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where the last inequality is due to the mean value theorem, the monotonicity property – i.e.,
di(x, 0, i) ≤ di(x− 1, 0, i) and di(x− 1, i, 0) ≤ di(x, i, 0) – and the fact that ω̄ is the uniform bound
on the derivatives of the one-period revenue functions as in Assumption 2.1.

A.9 Proof of Lemma 4.4

Let x̃i,t and xi,t denote the number of resources in locations i ∈ [0 : n] at time t in the relaxed and
original systems, respectively. Lemma A.11 shows that if the two systems start at the same state
and have the same sequence of requests and private values, x̃i,t ≥ xi,t for all spokes i ∈ [n] and time
periods t.

Lemma A.11. If the relaxed and original systems start at the same state and have the same sequence
of requests and private values, for any time period t, x̃i,t ≥ xi,t for all spokes i ∈ [n] and x̃0,t ≤ x0,t.

Proof. We prove by induction. Since the two systems start at the same state, x̃i,0 = xi,0 for all
i ∈ [n]. For each spoke i, first suppose x̃i,t−1 = xi,t−1. If request (i, 0) arrives at time t, the
Lagrangian policy takes the same action in the two systems, hence x̃i,t = xi,t. If request (0, i)
arrives, the Lagrangian policy takes different actions in the two systems only when the hub of the
original system runs out of resources, in which case we have x̃i,t ≥ x̃i,t−1 = xi,t−1 = xi,t. Next
suppose x̃i,t−1 ≥ xi,t−1 + 1 for spoke i. If request (i, 0) arrives at time t, we have x̃i,t ≥ x̃i,t−1− 1 ≥
xi,t−1 ≥ xi,t. If request (0, i) arrives, x̃i,t ≥ x̃i,t−1 ≥ xi,t−1 + 1 ≥ xi,t. Thus by induction, x̃i,t ≥ xi,t
for all spokes i ∈ [n] and time periods t. Finally, since

∑n
i=0 xi,t = m and

∑n
i=0 x̃i,t = m, we have

x̃0,t ≤ x0,t for all time periods t.

Lemma A.11 implies that for any integer k,

P
[
X̃i(δ) ≤ k

]
= lim

t→∞
P
[
x̃i,t ≤ k

]
≤ lim

t→∞
P
[
xi,t ≤ k

]
= P

[
Xi(δ) ≤ k

]
,

and
P
[
X0(δ) ≤ k

]
= lim

t→∞
P
[
x0,t ≤ k

]
≤ lim

t→∞
P
[
x̃0,t ≤ k

]
= P

[
X̃0(δ) ≤ k

]
,

where the equations are because in both systems, the limiting distribution of the Markov chain
converges to the unique stationary distribution, independently of the initial state, due to Corollaries
B.10 and B.11. The inequalities follow from Lemma A.11 when we start the two systems with the
same state and couple the sequence of requests and their private values. Note that in the proof we
only use the fact that the Lagrangian policy only depends on the state of resources through the
resource level of the spoke involved in the request type.

A.10 Proof of Proposition 4.6

Proposition 4.6 comes from Lemma A.12, which provide a concentration inequality for a sequence
of independent random variables with discrete log-concave distributions (defined in Definition B.1)
and uniformly bounded means.

Lemma A.12. Let
{
Xi

}n
i=1

be a sequence of independent discrete log-concave random variables each

with mean value µi = E
[
Xi

]
. If µi ≤ c for all i ≤ [n] are uniformly bounded from above by some

constant c > 0, then for any λ ≥ 1 and letting X =
∑n

i=1Xi and µ = E
[
X
]

=
∑n

i=1 µi, we have

P
[
X ≥ λµ

]
≤ exp

{
− (λ− 1)µ

1 + c
− n+ µ

1 + c
ln

(
1− λµ− µ

λµ+ n

)}
. (42)
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We prove Lemma A.12 at the end of this section. We can apply Lemma A.12 to X̃i(δ) for i ∈ [n]
because each X̃i(δ) is log-concave by Proposition B.9, and X̃i(δ) are independent because the joint
distribution is equal to the product of their marginal distributions by Corollary B.10.

Let µ = E
[∑n

i=1 X̃i(δ)
]

be the expected number of resources in the spokes of the relaxed

system. We have 0 < µ ≤ m− δ. Applying (42) with λ = m
µ and b = 1

1+c gives

P
[
X̃0(δ) ≤ 0

]
= P

[
n∑
i=1

X̃i(δ) ≥ m

]

≤ exp

{
− b ·

(
λµ− µ+ (n+ µ) · ln

(
1− λµ− µ

λµ+ n

))}

= exp

{
− b ·

(
m− µ+ (n+ µ) · ln

(
n+ µ

m+ n

))}

= exp

{
b ·

(
(n+ µ) · ln

(
m+ n

n+ µ

)
− (m− µ)︸ ︷︷ ︸

♠

)}
.

(43)

Since lnx ≤ x−1√
x

for x ≥ 1, we have

♠ ≤ (n+µ)·m− µ
n+ µ

·
√
n+ µ

m+ n
−(m−µ) = (m−µ)·

(√
1− m− µ

m+ n
−1

)
≤− (m− µ)2

2 · (m+ n)
≤− δ2

2 · (m+ n)
,

where the second-to-last inequality is due to
√

1− x− 1 ≤ −x
2 for x ≤ 1. Thus from (43) we have

P
[
X̃0(δ) ≤ 0

]
≤ exp

(
− b

2
· δ2

m+ n

)
.

Proof of Lemma A.12. We first provide an upper bound on the probability generating function of a
log-concave random variable in Lemma A.14. The proof is based on the classic inequality bounding
the factorial moments of a log-concave random variable, as we state in Lemma A.13.

Definition A.1 (Factorial Moment). Let p = {pi}∞i=0 be a discrete distribution with all its support
on non-negative integers. The factorial moment of p of order r ≥ 1 is

µ[r] =
∞∑
i=0

pi ·
{
i · (i− 1) · · · (i− r + 1)

}
=
∞∑
i=r

pi ·
{
i · (i− 1) · · · (i− r + 1)

}
=
∞∑
i=r

pi ·
i!

(i− r)!
.

We set µ[0] = 1 for convenience.

Lemma A.13 (Theorem 2 in Keilson 1972). Let p = {pi}∞i=0 be a discrete log-concave distribution
and let µ[r] denote its order-r factorial moment. For any r ≥ 1 we have{

µ[r+1]

(r + 1)!

}1/(r+1)

≤
{
µ[r]

r!

}1/r

≤ · · · ≤
µ[1]

1!
= µ, (44)

where µ denotes the mean value of p. All inequalities in (44) hold with equalities when p is a
geometric distribution, i.e., when pi = θ(1− θ)i for some 0 < θ ≤ 1.
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Lemma A.14 provides an upper bound on the probability generating function of a log-concave
random variable based on Lemma A.13.

Lemma A.14. Let X be a discrete log-concave random variable (defined in Definition B.1) and let
µ = E[X] denote its mean value. We have E

[
zX
]
≤ 1

1−µ(z−1) for all 1 ≤ z < 1 + 1
µ .

Proof. First, we have

E
[
zX
]

=
∞∑
i=0

pi · zi
(i)
=
∞∑
i=0

pi

i∑
j=0

(
i

j

)
(z − 1)j

(ii)
=
∞∑
j=0

1

j!
· (z − 1)j

∞∑
i=j

pi ·
i!

(i− j)!
=
∞∑
j=0

(z − 1)j ·
µ[j]

j!
,

where (i) is due to the binomial expansion that zi =
[
(z− 1) + 1

]i
=
∑i

j=0

(
i
j

)
· (z− 1)j for all i ≥ 0

and (ii) follows from switching the order of summations by Tonelli’s theorem because all terms are
non-negative. (44) then implies that

E
[
zX
]
≤
∞∑
j=0

µj(z − 1)j =
1

1− µ(z − 1)
.

We now prove Lemma A.12. The proof follows Theorem 2.1 in Janson (2018), which provides a
concentration inequality for summations of independent geometric random variables using Chernoff
inequality. Their results can be easily extended to random variables with log-concave distributions,
as we present it here.

From Lemma A.14, the moment generating function of each random variable Xi can be bounded
from above by

E
[
etXi

]
≤ 1

1− µi(et − 1)
=

e−t

(1 + µi)e−t − µi
, ∀ 0 ≤ t < ln

(
1 +

1

µi

)
.

Since for all 0 ≤ t < 1
1+µi

≤ ln
(
1 + 1

µi

)
, the denominator satisfies

(1 + µi)e
−t − µi ≥ (1 + µi) · (1− t)− µi = 1− (1 + µi)t > 0,

we have

E
[
etXi

]
≤ e−t

1− (1 + µi)t
, ∀ 0 ≤ t < 1

1 + µi
.

As a result, for all 0 ≤ t < 1
1+c ≤ mini

1
1+µi

we have

E
[
etX
]

=
n∏
i=1

E
[
etXi

]
≤ e−nt

n∏
i=1

(
1− (1 + µi)t

)−1
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because the random variables are independent. By the Chernoff inequality, for all 0 ≤ t < 1
1+c ,

P
[
X ≥ λµ

]
≤ e−tλµE

[
etX
]

≤ exp

(
− tλµ− tn−

n∑
i=1

ln
(

1− (1 + µi)t
))

(a)

≤ exp

(
− tλµ− tn−

n∑
i=1

1 + µi
1 + c

ln
(

1− (1 + c)t
))

= exp

(
− tλµ− tn− n+ µ

1 + c
ln
(

1− (1 + c)t
))

,

where (a) is due to the fact that the function − ln(1− x) is convex on (0, 1) and is 0 at x = 0, thus
by Jensen’s inequality,

− ln(1− x) ≤ −x
y

ln(1− y), ∀ 0 ≤ x ≤ y < 1.

By choosing t = (λ−1)µ
(1+c)(λµ+n) (which is optimal here), we obtain (42).

A.11 Proof of Lemma 4.8

We prove a more general result stated in Lemma A.15 that under some regularity conditions on
the function γi(β) as defined in (8), Assumption 4.1 holds. We then show Lemma 4.8 are sufficient
for the assumptions on γi(β) in Lemma A.15 to hold.

Lemma A.15. Suppose that function γi(β) is differentiable, and on β ∈ [0, 1], is strongly concave
with parameter `i > 0 and has Lipschitz continuous gradient with parameter Li > 0. Further
assume that n`i ≥ ¯̀, nLi ≤ L̄, and qi0, q0i ≤ q̄

n for all i ∈ [n] and some positive constants ¯̀, L̄ and

q̄. Then λ∗(δ) ≥ λ̄
n for all δ ≥ 0 and some constants λ̄ > 0 and Assumption 4.1 holds.

We prove Lemma A.15 in Appendix A.11.1; an overview of the key steps of the proof is as follows.
Letting pi(x) be the optimal probabilities to (6), we can lower bound the ratio β(x) = pi(x+1)/pi(x)
through the first-order optimality conditions of (7) and show that these ratios are close to one for a
large number of states x if the dual variable λ is sufficiently small. This implies that the expected
number of resources at every spoke grows unbounded as λ goes to zero. Since the total number of
resources at the spokes with λ = λ∗(δ) is no larger than m − δ, λ∗(δ) cannot be too small, which
in turn implies that the spoke resources are uniformly bounded.

We now show Lemma 4.8 provides sufficient conditions for the assumptions on γi(β) in Lemma
A.15 to hold based on the primitives of the problem, thus finished the proof.

Let di0(β) denote an optimal solution to γi(β). We can set di0(0) arbitrarily because it does
not affect the objective when β = 0. When β > 0, we can express d0i in terms of di0 and rewrite
(8) as

γi(β) = max
di0∈[0,1∧ q0i

qi0
· 1
β

]
q0i · r0i

(
β · qi0

q0i
· di0

)
+ β · qi0 · ri0(di0). (45)

Since the revenue functions ri0(d) and r0i(d) are strictly concave, di0(β) is unique for any β > 0.
Let

f(β, d) = q0i · r0i

(
β · qi0

q0i
· d
)

+ β · qi0 · ri0(d)
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be the objective of (45). f(β, d) is concave in d with partial derivative

∂f(β, d)

∂d
= β · qi0 ·

(
r′0i

(
β · qi0

q0i
· d
)

+ r′i0(d)

)
decreasing in d. Since ∂f(β,d)

∂d

∣∣
d=0

= β · qi0 ·
(
r′0i(0) + r′i0(0)

)
> 0, the optimal solution satisfies

di0(β) > 0 when β > 0. di0(β) may equal to the right end-point min
{

1, q0iqi0 ·
1
β

}
. In the following,

we study γi(β) depending on whether the optimal solution is interior or one of the upper boundaries
is binding.

Case 1 We have di0(β) = 1 if 1 ≤ q0i
qi0
· 1
β and ∂f(β,d)

∂d

∣∣
d=1
≥ 0, which is equivalent to β ≤ q0i

qi0
and

r′0i

(
β · qi0q0i

)
+ r′i0(1) ≥ 0. Since ri0(d) and r0i(d) are strictly concave, there exists some β > 0 such

that r′0i

(
β · qi0q0i

)
+r′i0(1) = 0 if and only if r′0i(0)+r′i0(1) > 0. If it is the case, since r′0i(1)+r′i0(1) < 0,

we must have β ≤ q0i
qi0

. Moreover, r′0i

(
β · qi0q0i

)
+ r′i0(1) ≥ 0 for all β ≤ β, and thus di0(β) = 1 when

0 < β ≤ β. If r′0i(0) + r′i0(1) ≤ 0, we set β = 0. When β ∈ [0, β], since di0(β) = 1, we have

γi(β) = f
(
β, 1
)

= q0i · r0i

(
β · qi0

q0i

)
+ β · qi0 · ri0(1),

which is concave and differentiable in β. The derivative

γ′i(β) = qi0 ·

(
r′0i

(
β · qi0

q0i

)
+ ri0(1)

)

is continuous on [0, β] because ri0(d) and r0i(d) are twice differentiable. This implies that if β > 0,

γ′i(β−) = qi0 ·

(
r′0i

(
β · qi0

q0i

)
+ ri0(1)

)
. (46)

The second-order derivative satisfies

− γ′′i (β) = −q
2
i0

q0i
r′′0i(β) ∈

[
q2

q̄

ū

n
,
q̄2

q

Ū

n

]
, ∀ β ∈ [0, β]. (47)

Case 2 di0(β) = q0i
qi0
· 1
β if q0i

qi0
· 1
β ≤ 1 and ∂f(β,d)

∂d

∣∣
d=

q0i
qi0
· 1
β
≥ 0, which is equivalent to β ≥ q0i

qi0
and

r′0i(1) + r′i0

(
q0i
qi0
· 1
β

)
≥ 0. Since ri0(d) and r0i(d) are strictly concave, there exists some β̄ > 0 such

that r′0i(1)+r′i0

(
q0i
qi0
· 1
β̄

)
= 0 if and only if r′0i(1)+r′i0(0) > 0. In this case, β̄ has to be larger than q0i

qi0

and r′0i(1) + r′i0

(
q0i
qi0
· 1
β

)
≥ 0 for all β ≥ β̄. Thus, di0(β) = q0i

qi0
· 1
β when β ≥ β̄. If r′0i(1) + r′i0(0) ≤ 0,

we set β̄ =∞. When β ∈ [β̄,∞), since di0(β) = q0i
qi0
· 1
β , we have

γi(β) = f
(
β, di0(β)

)
= q0i · r0i(1) + β · qi0 · ri0

(q0i

qi0
· 1

β

)
.
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Hence,

γ′i(β) = qi0 · ri0
(q0i

qi0
· 1

β

)
− 1

β
· q0i · r′i0

(q0i

qi0
· 1

β

)
,

and

γ′′i (β) =
1

β3
· q

2
0i

qi0
r′′0i

(q0i

qi0
· 1

β

)
< 0.

The first-order derivative is continuous on [β̄,∞) because ri0(d) and r0i(d) are twice differentiable.
Thus if β̄ <∞,

γ′i(β̄+) = qi0 · ri0
(q0i

qi0
· 1

β̄

)
− 1

β̄
· q0i · r′i0

(q0i

qi0
· 1

β̄

)
= qi0 ·

(
ri0

(
di0(β̄)

)
− di0(β̄) · r′i0

(
di0(β̄)

))
. (48)

If β̄ < 1, since β̄ ≥ q0i
qi0

, the second-order derivative satisfies

− γ′′i (β) = − 1

β3
· q

2
0i

qi0
r′′0i

(q0i

qi0
· 1

β

)
∈

[
q2

q̄

ū

n
,
q̄2

q

Ū

n

]
, ∀ β ∈ [β̄, 1]. (49)

Case 3 When β ∈ [β, β̄], di0(β) satisfies

∂f(β, d)

∂d

∣∣
d=di0(β)

= β · qi0 ·

(
r′0i

(
β · qi0

q0i
· di0(β)

)
+ r′i0

(
di0(β)

))
= 0.

Thus,

r′0i

(
β · qi0

q0i
· di0(β)

)
+ r′i0

(
di0(β)

)
= 0. (50)

From (50) and the implicit function theorem, we have

di0(β)

dβ
= −

qi0 · di0(β) · r′′0i
(
β · qi0q0i · di0(β)

)
qi0 · β · r′′0i

(
β · qi0q0i · di0(β)

)
+ q0i · r′′i0

(
di0(β)

) ≤ 0, (51)

thus di0(β) is decreasing in β.
Let us first assume β̄ <∞ and consider the function f(β, d) over [β, β̄]× [0, 1]; since d in f(β, d)

is restricted to be in
[
0, 1 ∧ q0i

qi0
· 1
β

]
, we extend r0i(d) smoothly over [1,∞] making sure f(β, d)

is well-defined on the support [β, β̄] × [0, 1]. Note that in the extension we ensure that r0i(d) is
strongly concave and has a Lipschitz continuous gradient with the same parameters. Since the
partial derivative of f(β, d) with respect to β is

∂f(β, d)

∂β
= qi0 ·

(
d · r′0i

(
β · qi0

q0i
· d
)

+ ri0(d)

)
,

which is continuous in (β, d), by the envelope theorem, especially Corollary 4 in Milgrom and Segal
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(2002), we have

γ′i(β) =
∂f(β, d)

∂β

∣∣
d=di0(β)

= qi0 ·

(
di0(β) · r′0i

(
β · qi0

q0i
· di0(β)

)
+ ri0

(
di0(β)

))
(i)
= qi0 ·

(
ri0

(
di0(β)

)
− di0(β) · r′i0

(
di0(β)

)) (52)

on β ∈ (β, β̄), where (i) is due to the first-order condition (50). From (51) and (52), the second-order
derivative is

γ′′i (β) =
q2
i0 ·
(
di0(β)

)2 · r′′i0(di0(β)
)
· r′′0i

(
β · qi0q0i · di0(β)

)
qi0 · β · r′′0i

(
β · qi0q0i · di0(β)

)
+ q0i · r′′i0

(
di0(β)

) ≤ 0, ∀ β ≤ β ≤ β̄, (53)

thus γ(β) is concave on [β, β̄]. If β > 0, from Corollary 4 in Milgrom and Segal (2002), we have

γ′i(β+) =
∂f(β, d)

∂β

∣∣
d=di0(β)=1

= qi0 ·

(
r′0i

(
β · qi0

q0i

)
+ ri0(1)

)
(a)
= γ′(β−),

where (a) is due to (46); hence γ(β) is differentiable at β = β. Analogously, if β̄ <∞, again from
Corollary 4 in Milgrom and Segal (2002), we have

γ′i(β̄−) =
∂f(β, d)

∂β

∣∣
d=di0(β̄)

(b)
= qi0 ·

(
ri0

(
di0(β̄)

)
− di0(β̄) · r′i0

(
di0(β̄)

))
(c)
= γ′(β̄+),

where (b) is from (52) and (c) is from (48); thus γ(β) is differentiable at β = β̄ as well. Combining
three segments together, we know γ(β) is differentiable everywhere. Note that we assume β̄ < ∞
in case 3. If this is not the case, following the same argument, we can show γi(β) is differentiable
in any bounded interval [0,M ] with M > 0; thus again, γi(β) is differentiable on R+.

Finally, from (50) and the mean value theorem we have

r′0i(0) + r′′0i(ε1) · β · qi0
q0i
· di0(β) + r′i0(0) + r′′0i(ε2) · di0(β) = 0

for some ε1 ∈ [0, β · qi0q0i · di0(β)] and ε2 ∈ [0, di0(β)]. This implies that

di0(β) =
−r′0i(0)− r′i0(0)

r′′0i(ε1) · β · qi0q0i + r′′0i(ε2)
≥ r′0i(0) + r′i0(0)

Ū
·

q

β · q̄ + q
≥ ū

Ū
·

q

β · q̄ + q
, (54)

where in the last inequality we use the facts that rij(1) ≥ 0, rij(0) = 0, and rij(1) ≤ rij(0) + r′ij(0) ·
(1 − 0) − (1−0)2

2 ū by strong concavity of rij(d). Thus if β < 1, on the interval [β, 1 ∧ β̄], (53) and
(54) implies that the second-order derivative satisfies

− γ′′i (β) ∈

[
1

2n

ū3

Ū2

q4

q̄(q̄ + q)2
,
q̄2

q

Ū

n

]
, ∀ β ∈ [β, 1 ∧ β̄]. (55)

From (47), (49), (55), the monotonicity of γ′i(β), and the mean value theorem on γ′i(β), γi(β) is
`i-strongly concave and has a Li-Lipschitz continuous gradient on β ∈ [0, 1] with some constants `i
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and Li that satisfy 1
2n

ū3

Ū2

q4

q̄(q̄+q)2 ≤ `i ≤ Li ≤ q̄2

q
Ū
n .

A.11.1 Proof of Lemma A.15

We let E
[
X̃λ
i

]
be the expected number of resources in the spoke problem with λ ≥ 0. Lemma A.16

shows that E
[
X̃λ
i

]
can be arbitrarily large by choosing a sufficiently small λ.

Lemma A.16. Suppose the assumptions on γi(β) and qij in Lemma A.15 hold. Then for any ρ > 0,

there exists a constant c(ρ) such that E
[
X̃λ
i

]
≥ ρ for λ = c(ρ)

n , all spokes i ∈ [n] and m large enough.

We prove Lemma A.16 in Appendix A.11.2. Since the perturbed problem (11) is a convex
program in λ and the optimal probability distribution to each spoke problem with a given λ is

unique by Proposition B.8, the objective V̄ λ − δλ is differentiable in λ with derivative ∂(V̄ λ−δλ)
∂λ =

(m− δ)−
∑

i∈[n] E
[
X̃λ
i

]
. From Lemma A.16, there exists a constant λ̄ such that E

[
X̃λ
i

]
≥ 2m

n for

λ = λ̄
n and all i ∈ [n]. Thus, the derivative at λ = λ̄

n is negative and as a result λ∗(δ) ≥ λ̄
n . Finally,

since 0 ≤ hλ
∗(δ)
i ≤ (qi0 + q0i) · r̄ − λ∗(δ) · E

[
X̃i(δ)

]
, we have E

[
X̃i(δ)

]
≤ r̄ · 2q̄

λ̄
for all spokes i ∈ [n].

A.11.2 Proof of Lemma A.16

For ease of notation, in the proof, we consider a spoke i and drop the subscript i for γi(β) by letting
γ(β) , γi(β); we drop the subscript i for `i and Li as well. By assumption, γ(β) is differentiable.
Moreover, from Lemma A.3, γ(β) is strictly concave; thus, the derivative γ′(β) is strictly decreasing
and the inverse (γ′)−1(e) exists and strictly decreases as well. Finally, by assumption, on β ∈ [0, 1]
γ(β) is strongly concave with a constant ` > 0, i.e.,

γ(β′) ≤ γ(β) + γ′(β) ·
(
β′ − β

)
− `

2
·
(
β′ − β

)2
, ∀ β, β′ ∈ [0, 1], (56)

and has a Lipschitz continuous gradient with a constant L > 0, i.e.,

|γ′(β)− γ′(β′)| ≤ L · |β − β′|, ∀ β, β′ ∈ [0, 1]. (57)

(56) and (57) imply that ` ≤ L. We first construct lower bounds on the probability ratios βx =
pi(x+1)
pi(x) in Lemma A.19 with pi(x) being the optimal probability distribution to the spoke problem

(6). Lemmas A.17 and A.18 serve as preliminary results.

Lemma A.17. Let g(β, y) = (γ′)−1
(
z(β) + γ′(0)− λy

)
with λ > 0 and z(β) = β · γ′(β)− γ(β) as

in Lemma A.5. Let ȳ = γ′(0)−γ(1)
λ and β∗y = inf

{
β ≥ 0 : g(β, y) ≤ β

}
. Then,

1. g(β, y) is strictly increasing in β and y;

2. β∗0 = g(β∗0 , 0) = 0, ȳ > 0 and β∗ȳ = g(β∗ȳ , ȳ) = 1;

3. for y ∈ [0, ȳ], 0 ≤ β∗y ≤ 1, g(β∗y , y) = β∗y , and β∗y is increasing in y;

4. for β ∈ [0, β∗y ], g(β, y) ≥ αyβ + (1− αy)β∗y with αy =
(
1− `

L

)
+ `

Lβ
∗
y .

Proof. Part 1 is because both (γ′)−1(e) and z(β) are strictly decreasing and λ > 0. For part 2, since
g(0, 0) = 0, we have β∗0 = g(β∗0 , 0) = 0. Moreover, since γ(0) = 0 and γ(1) < γ(0)+γ′(0) · (1−0) by
strict concavity of γ(β), γ′(0) > γ(1) and hence ȳ > 0. Finally, let g̃(β) , g(β, ȳ) = (γ′)−1

(
γ(1) +
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z(β)
)
. We show g̃(1) = 1 and g̃(β) > β for all β ∈ R+ and β 6= 1; thus β∗ȳ = g(β∗ȳ , ȳ) = 1. To see

this, first, note that g̃(1) = (γ′)−1
(
γ(1) + z(1)

)
= (γ′)−1

(
γ′(1)

)
= 1. Second, since γ(β) is strictly

concave, for any β 6= 1 we have

γ(1) < γ(β) + γ′(β) · (1− β) = γ′(β)− z(β).

Thus, γ′
(
g̃(β)

)
= γ(1) + z(β) < γ′(β). Since γ′(β) is strictly decreasing, we have g̃(β) > β.

Part 3: we already proved this for y = 0 and y = ȳ in part 2. We now show that for any
y ∈ (0, ȳ), 0 ≤ β∗y ≤ 1 and g(β∗y , y) = β∗y . First, g(0, y) > g(0, 0) = 0 and g(1, y) < g(1, ȳ) = 1 from
part 1. Second, note that g(β, y) is jointly continuous in (β, y) for β ∈ [0, 1] and y ∈ [0, ȳ]. To see
this, since γ(β) has Lipschitz continuous gradient on β ∈ [0, 1], γ′(β) is continuous on [0, 1] and
(γ′)−1(e) is continuous on [γ′(1), γ′(0)]. The continuity of g(β, y) then follows from the definition
of z(β) and the fact that g(β, y) ∈ [0, 1] when β ∈ [0, 1] and y ∈ [0, ȳ]. Now let h(β) = g(β, y)− β.
From above we know h(0) > 0, h(1) < 0, and h(β) is continuous on β ∈ [0, 1]. The intermediate
value theorem then implies the existence of a point β∗y ∈ [0, 1] that satisfies g(β∗y , ȳ) = β∗y . Finally,
the monotonicity of β∗y follows from the fact that g(β, y) is increasing in y.

Part 4: from β∗y = g(β∗y , y), we have γ′(β∗y) = z(β∗y) + γ′(0)− λy. Thus,

g(β, y) = (γ′)−1
(
z(β) + γ′(0)− λy

)
= (γ′)−1

(
z(β)− z(β∗y) + γ′(β∗y)

)
.

Since γ′(β) is strictly decreasing in β, g(β, y) ≥ αyβ + (1− αy)β∗y if and only if

z(β)− z(β∗y) + γ′(β∗y) ≤ γ′
(
αyβ + (1− αy)β∗y

)
.

Letting h(β) = γ′(β)− z(β), above is equivalent to

γ′(β)− γ′
(
αyβ + (1− αy)β∗y

)
≤ h(β)− h(β∗y). (58)

Since γ(β) has Lipschitz continuous gradient on [0, 1] with L > 0, the left-hand side is no larger
than L(1− αy)(β∗y − β). On the other hand, the right-hand side satisfies

h(β)− h(β∗y) = (1− β)γ′(β)− (1− β∗y)γ′(β∗y) + γ(β)− γ(β∗y)

≥ (1− β)γ′(β)− (1− β∗y)γ′(β∗y) + γ′(β)(β − β∗y)

= (1− β∗y)(γ′(β)− γ′(β∗y))

≥ `(1− β∗y)(β∗y − β),

where the first inequality is from γ(β) + γ′(β)(β∗y − β) ≥ γ(β∗y) because γ(β) is concave, and
the second inequality is from the `-strong concavity of γ(β) on [0, 1]. Finally, (58) holds because
`(1− β∗y)(β∗y − β) = L(1− αy)(β∗y − β) by the choice of αy.

In Lemma A.18, we provide lower and upper bounds on β∗y for y ∈ [0, ȳ].

Lemma A.18. β∗y defined in Lemma A.17 satisfies the following for y ∈ [0, ȳ].

1. 1−
√

2λ
l (ȳ − y) ≤ β∗y ≤ 1−

√
2λ
L (ȳ − y);

2. 1−
√

1− 2λ
L y ≤ β

∗
y ≤ 1−

√
1− 2λ

l y, where the second inequality holds for y ≤ l
2λ .
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Proof. We first prove inequality (59) as a preparation.

λ

L
· 1

1− β∗y
≤
dβ∗y
dy
≤ λ

`
· 1

1− β∗y
, ∀ 0 ≤ β∗y ≤ 1. (59)

To see this, note that γ′(β∗y) = z(β∗y) + γ′(0)− λy from β∗y = g(β∗y , y) in Lemma A.17 part 2; thus
letting h(β) = γ′(β)− z(β), we have h(β∗y) = γ′(0)− λy. For any β, β + ∆β ∈ [0, 1],

h(β + ∆β)− h(β) = γ′(β + ∆β) · (1− β −∆β) + γ(β + ∆β)− γ′(β) · (1− β)− γ(β)

= γ′(β + ∆β) · (1− β −∆β)− γ′(β) · (1− β) + γ′(β + ε∆β) ·∆β

=
(
γ′(β + ∆β)− γ′(β)

)
· (1− β) + ∆β ·

(
γ′(β + ε∆β)− γ′(β + ∆β)

)
,

(60)

where the second equation is because γ(β + ∆β) = γ(β) + γ′(β + ε∆β) ·∆β for some ε ∈ [0, 1] by
the mean value theorem. For any y, y + ∆y ∈ [0, ȳ], let ∆β∗y = β∗y+∆y − β∗y ; ∆β∗y > 0 if and only
if ∆y > 0 because β∗y is increasing in y by Lemma A.17 part 3. Since h(β∗y) = γ′(0) − λy for all
y ∈ [0, ȳ], we have

λ∆y = λ(y + ∆y)− λy = h(β∗y)− h(β∗y+∆y) = h(β∗y)− h(β∗y + ∆β∗y). (61)

Combining (60) and (61) with the fact that γ(β) is `-strongly concave and has L-Lipschitz contin-
uous gradient on [0, 1] gives

`

λ
·
(

1− β∗y
)

+O
(
∆β∗y

)
≤ ∆y

∆β∗y
≤ L

λ
·
(

1− β∗y
)

+O
(
∆β∗y

)
.

Letting ∆β∗y go to zero and rearranging gives (59).

Part 1: since β∗y ≤ 1, from (59) we have (1 − β∗y) · dβ∗y ≤ λ
` · dy. Since β∗y is increasing in y,

integrating both sides over [y, ȳ] gives∫ β∗ȳ=1

β∗y

(1− β∗y) · dβ∗y =
(1− β∗y)2

2
≤
∫ ȳ

y

λ

`
· dy =

λ

`
· (ȳ − y).

Rearranging gives the lower bound. A similar analysis applied to the first inequality in (59) yields
the upper bound.

Part 2: proof is analogous to part 1 by integrating over [0, y].

Now we are ready to provide lower bounds on the ratios of the optimal probabilities to (6) in
Lemma A.19.

Lemma A.19. Let β̃1 = 0 and consider β̃y+1 = g(β̃y, y). Let βx = pi(x+1)
pi(x) for x ∈ [0 : m∗ − 1] be

the ratio of the optimal probabilities to the spoke problem (6), with m∗ being the end point of the
support of pi(x) as defined in Lemma A.7. Then,

1. β̃y is increasing in y;

2. β̃y+1 ≤ β∗y for all integers y ≤ ȳ;

3. β̃y ≤ βm∗−y for all y ∈ [1 :m∗] when m ≥ γ′(0)
λ ;

4. m∗ ≥ ȳ − 1 when m ≥ γ′(0)
λ .
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Proof. We prove parts 1 to 3 by induction. For part 1, as a base case, let β̃0 = 0; it is easy to see
that β̃1 = g(β̃0, 0) = 0 satisfies the iteration. By induction, β̃y+1 = g(β̃y, y) ≥ g(β̃y−1, y − 1) = β̃y
because g(β, y) is increasing in both β and y.

Part 2: as a base case, we have β̃1 = 0 ≤ β∗0 = 0. Now suppose β̃y ≤ β∗y−1. Since β∗y increases

in y by Lemma A.17 part 3, β̃y ≤ β∗y and thus β̃y+1 = g(β̃y, y) ≤ g(β∗y , y) = β∗y by monotonicity of
g(β, y).

Part 3: when m ≥ γ′(0)
λ , m∗ < m and is the unique integer satisfying10

λm∗ + hλi < γ′(0) ≤ λ(m∗ + 1) + hλi . (62)

From the first-order optimality conditions as in Lemma A.7, we have

γ′(βm∗−1) = λm∗ + hλi ,

γ′(βx−1) = z(βx) + λx+ hλi , ∀ x ≤ m∗ − 1.

As a base case, we have βm∗−1 = (γ′)−1
(
λm∗+ hλi

)
≥ (γ′)−1

(
γ′(0)

)
= 0 = β̃1, where the inequality

follows from the facts that γ′(β) decreases in β and λm∗ + hλi < γ′(0) by (62). In the induction
step, suppose βm∗−y ≥ β̃y. Then

βm∗−y−1 = (γ′)−1
(
z(βm∗−y) + hλi + λm∗ − λy

)
≥ (γ′)−1

(
z(β̃y) + γ′(0)− λy

)
= β̃y+1,

where the inequality follows from the facts that γ′(β) decreases in β, λm∗ + hλi < γ′(0) by (62),
z(β) decreases in β by Lemma A.5, and βm∗−y ≥ β̃y by assumption.

Part 4: first, note that the optimal value of the spoke problem hλi satisfies hλi ≤ hλ=0
i −λE

[
X̃λ
i

]
≤

γ(1), where the second inequality follows from the facts that E
[
X̃λ
i

]
≥ 0 and γ(1) is the flow

relaxation to hλ=0
i . From (62) we have m∗ ≥ γ′(0)−hλi

λ − 1 ≥ γ′(0)−γ(1)
λ − 1 = ȳ − 1.

As a final preparation to the proof of Lemma A.16, we provide two more lemmas. Lemma A.20
bounds the gap ey = β∗y − β̃y from above.

Lemma A.20. For any integer y ≤ ȳ, the gap ey = β∗y − β̃y ≥ 0 satisfies

1. ey ≤ αy−1 · ey−1 + β∗y − β∗y−1 ≤ αy−1 · ey−1 + λ
` ·

1
1−β∗y

;

2. for any β̃ ∈ [0, 1], let ỹ = inf
{
y ≥ 0 : β∗y ≥ β̃

}
and α̃ =

(
1 − `

L

)
+ `

L β̃; then for any integer

1 ≤ y ≤ ỹ, we have ey ≤ α̃y−1 · e1 + λ
` ·

1
1−β̃ ·

1
1−α̃ .

Proof. Part 1: from Lemma A.17 part 4 we have

ey = β∗y − g(β̃y−1, y − 1) ≤ β∗y − αy−1β̃y−1 − (1− αy−1)β∗y−1 = αy−1 · ey−1 + β∗y − β∗y−1.

Moreover, from (59) we have

β∗y − β∗y−1 =

∫ y

y−1

(
dβ∗s
ds

)
ds ≤

∫ y

y−1

λ

`
· 1

1− β∗s
ds ≤ λ

`
· 1

1− β∗y
. (63)

10From (62), m∗ <
γ′(0)−hλi

λ
≤ γ′(0)

λ
≤ m.
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Part 2: since β∗y is increasing in y by Lemma A.17 part 3, for any integer y with 1 ≤ y ≤ ỹ,

β∗y ≤ β∗ỹ = β̃ and hence αy = (1− `
L) + `

Lβ
∗
y ≤ α̃ and ey ≤ αy−1 · ey−1 + λ

` ·
1

1−β∗y
≤ α̃ · ey−1 + λ

` ·
1

1−β̃ .

We now prove the inequality by induction. First, it is trivially true with y = 1. Now suppose y ≤ ỹ
and the inequality holds at y − 1. We have

ey ≤ α̃ · ey−1 +
λ

`
· 1

1− β̃
≤ α̃y−1 · e1 +

λ

`
· 1

1− β̃
·
( α̃

1− α̃
+ 1
)

= α̃y−1 · e1 +
λ

`
· 1

1− β̃
· 1

1− α̃
.

Lemma A.21 shows that the expected value of a discrete random variable is increasing in the
ratio of adjacent probabilities.

Lemma A.21. Consider two integer-valued random variables Xi with i ∈
{

1, 2
}

, each with support

ai ≤ x ≤ bi and probability mass function gi(x). If a1 ≥ a2, b1 ≥ b2, and g1(x+1)
g1(x) ≥

g2(x+1)
g2(x) for all

a1 ≤ x ≤ b2 − 1, then E[X1] ≥ E[X2].

Proof. It is easy to check that g1(x′)g2(x) ≥ g2(x′)g1(x) for all x′ ≥ x. Thus by Section 1.C in
Shaked and Shanthikumar (2007), X1 dominates X2 in the monotone likelihood ratio order, and
this implies that X1 first-order stochastically dominates X2.

Proof of Lemma A.16: We show in Section D.1 that for any β ∈ (0, 1), the distribution of the

resources in spoke i with βx = pi(x+1)
pi(x) being βx = β for 0 ≤ x ≤ k − 1 and βx = 0 for x ≥ k has

mean Bk(β) = βk+2k−(1+k)βk+1+β
(1−β)(1−βk+1)

. Moreover, limk→∞B
k(β) = B∞(β) , β

1−β . For any ρ > 0, pick

β̄ be such that B∞
(
β̄
)

= β̄
1−β̄ = 2ρ, i.e., β̄ = 2ρ

1+2ρ . Since limk→∞B
k
(
β̄
)

= B∞
(
β̄
)

= 2ρ, there

exists an integer N1 ∈ N such that Bk
(
β̄
)
≥ ρ for all k ≥ N1.

Select β̃ ∈ (β̄, 1) and let ∆ = β̃− β̄ > 0. Let ȳ = γ′(0)−γ(1)
λ , ỹ = inf

{
y ≥ 0 : β∗y ≥ β̃

}
, and ỹ0 the

minimum integer that is at least ỹ. Let m ≥ γ′(0)
λ (we will specify sufficient conditions for this later),

hence m∗ ≥ ȳ−1 from Lemma A.19 part 4. For any integer y satisfying 0 ≤ y ≤ ȳ−ỹ0−1 ≤ m∗−ỹ0,
the ratio βy = pi(y+1)

pi(y) with pi(y) optimal to (6) satisfies βy ≥ β̃m∗−y ≥ β̃ỹ0−1, where the first

inequality is from Lemma A.19 part 3 and the second one is because β̃y is increasing in y by
Lemma A.19 part 1. Since (a): β̃ỹ0−1 = β∗ỹ0−1 − eỹ0−1, (b): β∗ỹ0−1 ≥ β̃ −

λ
` ·

1
1−β̃ analogous to (63)

and noting that β∗ỹ = β̃, (c): eỹ0−1 can be bounded from above by Lemma A.20 in terms of e1 with

α̃ defined therein satisfying α̃ ≤
(
1− ¯̀

L̄

)
+

¯̀

L̄
β̃ < 1, and (d): e1 = β∗1 − β̃1 = β∗1 ≤ 1−

√
1− 2λ

` by

the upper bound in Lemma A.18 part 2, we have

βy ≥ β̃ỹ0−1 ≥ β̃ −
λ

`
· 1

1− β̃
−

(
1−

√
1− 2λ

`

)
− λ

`
· 1

1− β̃
· 1

1− α̃
, ∀ 0 ≤ y ≤ ȳ − ỹ0 − 1.

Since the right-hand side of above converges to β̃ when λ diminishes and recall that ` ≥ ¯̀

n , there

exists a constant c1 > 0 such that when λ ≤ c1
n , βy ≥ β̃ − ∆ = β̄ for all 0 ≤ y ≤ ȳ − ỹ0 − 1.

Moreover, since ȳ − ỹ ≥ `
2λ · (1− β̃)2 from Lemma A.18 part 1, there exists a constant c2 > 0 such

that ȳ − ỹ0 ≥ N1 when λ ≤ c2
n .

Combining everything together, since the mean value E
[
X̃λ
i

]
increases in βx = pi(x+1)

pi(x) by Lemma

A.21, we have E
[
X̃λ
i

]
≥ BN1

(
β̄
)
≥ ρ when λ = c

n with c = min{c1, c2}. To ensure that m ≥ γ′(0)
λ ,

note that since γ′(0) ≤ qi0 · (r̄ + ω̄) by Lemma A.4 and qi0 ≤ q̄
n , it suffices to set m ≥ q̄·(r̄+ω̄)

c .
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A.12 Proof of Theorem 6.1

The proof is analogous to the proof of Theorem 4.1. First, the same sensitivity analysis for V R(δ)
in Section 4.1 implies that Lemma 4.2 still holds, i.e.,

V R(δ) ≤ V R(0) = V R ≤ V R(δ) + r̄ · δ

m− δ
. (64)

Second, we can bound V R(δ)−V π(δ) from above in a similar manner as in Lemma 4.3. Specifically,
the same argument in Lemma A.10 implies that the difference of the continuation values ∆vi,t(x) for
each spoke is still bounded from above by the derivative bound ω̄ in Assumption 2.1. This implies
that every time the Lagrangian policy differs in the two systems, the difference in continuation
values is at most r̄ + ω̄ if the request is from a hub to a spoke; if the request is between hubs, the
difference in continuation values is at most r̄.

Since the Lagrangian policy takes different actions in the relaxed and original systems at the
same state (x, s) only when xj = 0 and hub j is the originating location for some j ∈ [J ], following
the same proof of Lemma 4.3, we have

V R(δ)− V π(δ) ≤ (r̄ + ω̄) ·
∑
j∈[J ]

qj · P
[
Xj(δ) = 0

]
, (65)

where qj =
∑

i∈[n] qji +
∑

j′∈[J ] qjj′ is the probability that hub j is the originating location of the
request. Combining (64) and (65) gives the desired result.

B Additional Results

Lemma B.1 (Lagrangian Policy in the Spoke Problem). For each spoke problem and using the La-
grangian policy, we have

1. Set Ii is the single positive recurrent class and the chain is aperiodic;

2. pi(x) is the unique stationary distribution;

3. Set Ii takes the form of Ii = [0 :Hi] for some non-negative integer 0 ≤ Hi ≤ m;

4. The Lagrangian policy is optimal to each spoke problem.

Proof. We prove Lemma B.1 through a sequence of properties. We say a set of states is closed if
the state remains in the set when started at a state in the set. Proposition B.2 shows the set Ii is
closed with the Lagrangian policy.

Proposition B.2. Set Ii is closed with the Lagrangian policy.

Proof. Suppose not. Without loss of generality we assume x ∈ Ii and x+ 1 ∈ Ici but di(x, 0, i) > 0.
From the balance constraint in (6) we have pi(x+ 1) · qi0 · di(x+ 1, i, 0) = pi(x) · q0i · di(x, 0, i) > 0.
This implies pi(x+ 1) > 0 and a contradiction.

Proposition B.3. pi(x) is a stationary distribution with the Lagrangian policy.

Proof. This is a direct result from the balance constraint in (6):

pi(x) · q0i · di(x, 0, i) = pi(x+ 1) · qi0 · di(x+ 1, i, 0), ∀ x ∈ [0 :m− 1].
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Proposition B.3 implies all states in Ii are positive recurrent.

Corollary B.4. All states x ∈ Ii are positive recurrent.

Proof. Since pi(x) is a stationary distribution from Proposition B.3 and pi(x) > 0 for all states
x ∈ Ii, states x ∈ Ii are recurrent according to Theorem 6.5.4 in Durrett (2010). Moreover, each
state x ∈ Ii is positive recurrent because the set Ii is finite.

Proposition B.5. States x ∈ Ici are transient.

Proof. This is due to Proposition B.2 and the construction of the Lagrangian policy for states
outside the set Ii.

Proposition B.6. Set Ii is irreducible.

Proof. Suppose not. Since all states in set Ii are positive recurrent (Corollary B.4), Ii must contain
at least two recurrent classes. Let C ( Ii be a recurrent class and a strict subset of Ii. Without loss
of generality, we assume state x ∈ C whereas state x−1 ∈ Ii\C lies in another recurrent class. Since
states x−1 and x do not reach each other, we must have di(x−1, 0, i) = di(x, i, 0) = 0. However, by
the complementary slackness properties (22)-(24), we have di(x − 1, 0, i) = argmaxd∈[0,1]

{
r0i(d) +

d ·
(
vλi (x) − vλi (x − 1)

)}
and di(x, i, 0) = argmaxd∈[0,1]

{
ri0(d) + d ·

(
vλi (x − 1) − vλi (x)

)}
with

vλi (x) being the average differential value functions in (20). Since the maximum points d∗0i =
argmaxd∈[0,1]r0i(d) and d∗i0 = argmaxd∈[0,1]ri0(d) are unique and strictly positive by Assumption
2.1, either di(x− 1, 0, i) ≥ d∗0i > 0 or di(x, i, 0) ≥ d∗i0 > 0; thus a contradiction.

Proposition B.7. The Markov chain is aperiodic.

Proof. The chain stays at the current state in every time period when the request type is neither
(i, 0) nor (0, i), with probability 1− qi > 0.

From Corollary B.4 and Propositions B.5 and B.6, set Ii is the single positive recurrent class
and all states outside Ii are transient. As a result, pi(x) is the unique stationary distribution. Since
Ii is irreducible by Proposition B.6 and every transition can only increase or decrease the current
state by one, Ii must take the form of Ii = [Li : Hi] which incorporates a sequence of consecutive
integers. We now show Li = 0. If λ > 0 but Li > 0, shifting the probabilities and controls to the
left by Li with p̃i(x) = pi(x+Li), d̃i(x, i, 0) = di(x+Li, i, 0) and d̃i(x, 0, i) = di(x+Li, 0, i) yields a
feasible solution to (6) with a strictly better objective value, thus a contradiction. If λ = 0, Lemma
A.7 implies that Ii = [0 :m], i.e., the optimal distribution spans the whole range.

Finally, since the Markov chain has a single positive recurrent class and pi(x) is the unique
stationary distribution, the average revenue of the Lagrangian policy does not depend on the initial
state and can be expressed as the objective of (6). The strong duality in Proposition 3.2 implies
that the average revenue of the Lagrangian policy is equal to the optimal average revenue hλi , hence
the Lagrangian policy is optimal to the spoke problem.

Proposition B.8. The stationary distribution pi(x) that is optimal to (6) is unique.

Proof. Suppose not. Let distribution pai (x) together with controls dai (x, i, 0) and dai (x, 0, i) and
distribution pbi(x) together with controls dbi(x, i, 0) and dbi(x, 0, i) be two optimal solutions to (6).
pai (x) and pbi(x) are not identical and we denote their supports by [0 :Ha

i ] and [0 :Hb
i ], respectively.

Without loss of generality, let dai (x, i, 0) = dai (x, 0, i) = 0 for all states x with pai (x) = 0, and
dbi(x, i, 0) = dbi(x, 0, i) = 0 for all states x with pbi(x) = 0.
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We first show that there exists a state x such that pai (x), pbi(x) > 0 and either dai (x, i, 0) 6=
dbi(x, i, 0) or dai (x, 0, i) 6= dbi(x, 0, i). To see this, note that if Ha

i 6= Hb
i , taking x = min

{
Ha
i , H

b
i

}
,

we have pai (x), pbi(x) > 0 and dai (x, 0, i) 6= dbi(x, 0, i). Otherwise if Ha
i = Hb

i , since the distributions
pai (x) and pbi(x) are not identical and both of them sum up to one, there must exist a state

x ∈ [0 :Ha
i − 1] such that the ratios

pai (x+1)
pai (x) and

pbi (x+1)

pbi (x)
are not equal. Since pai (x) · q0i · dai (x, 0, i) =

pai (x+ 1) · qi0 · dai (x+ 1, i, 0) and pbi(x) · q0i · dbi(x, 0, i) = pbi(x+ 1) · qi0 · dbi(x+ 1, i, 0), we have either
dai (x, 0, i) 6= dbi(x, 0, i) or dai (x+ 1, i, 0) 6= dbi(x+ 1, i, 0).

For any α1, α2 > 0 with α1 +α2 = 1, let pi(x) = α1 ·pai (x)+α2 ·pbi(x) for all states x, di(x, i, 0) =
α1·pai (x)
pi(x) · d

a
i (x, i, 0) +

α2·pbi (x)
pi(x) · d

b
i(x, i, 0) and di(x, 0, i) =

α1·pai (x)
pi(x) · d

a
i (x, 0, i) +

α2·pbi (x)
pi(x) · d

b
i(x, 0, i) for

all states x with pi(x) > 0, and di(x, i, 0) = di(x, 0, i) = 0 for all states x with pi(x) = 0. It is easy
to see that pi(x), di(x, i, 0) and di(x, 0, i) are feasible to (6). Moreover, since the revenue functions
ri0(d) and r0i(d) are strictly concave by Assumption 2.1, due to Jensen’s inequality, the objective
value with pi(x) and controls di(x, i, 0) and di(x, 0, i) is strictly larger than the objective values
with the probability distributions pai (x) and pbi(x). This violates the optimality of pai (x) and pbi(x)
and thus a contradiction.

Proposition B.9 shows that the stationary distribution for each spoke is (discrete) log-concave.

Definition B.1 (Discrete Log-concavity, c.f., Keilson and Gerber 1971, Keilson 1972). A discrete
probability distribution p = {pi}∞i=0 with all its support on non-negative integers is discrete log-
concave (or simply log-concave) if (i) its support Ip = {i ≥ 0 : pi > 0} is a sequence of consecutive
integers, i.e., for all 0 ≤ n1 ≤ n ≤ n2, if n1, n2 ∈ Ip, then n ∈ Ip; and (ii) p2

i ≥ pi−1 · pi+1 for all
i ≥ 1.

Proposition B.9. For each spoke i ∈ [n], the stationary distribution pi(x) solved from (6) is discrete
log-concave.

Proof. From Lemma B.1, the support of pi(x) is Ii = [0 : Hi] that is a sequence of consecutive
integers. Secondly, from the flow balance constraint in (6)

pi(x) · q0i · di(x, 0, i) = pi(x+ 1) · qi0 · di(x+ 1, i, 0), ∀ x ∈ [0 :m− 1],

we have (
pi(x)

)2 · di(x, i, 0) · di(x, 0, i) = pi(x− 1) · pi(x+ 1) · di(x+ 1, i, 0) · di(x− 1, 0, i)

for all x ∈ [1 : m−1]. Since the demand level di(x, 0, i) is decreasing in x and di(x, i, 0) is increasing
in x for x ∈ Ii by Proposition 3.3 and the support of pi(x) is a sequence of consecutive integers, we

have
(
pi(x)

)2 ≥ pi(x− 1) · pi(x+ 1) for all x ∈ [1 : m− 1].

Corollary B.10 shows that the Lagrangian policy in the Lagrangian relaxation has a unique
stationary distribution, which factors across spokes.

Corollary B.10 (Lagrangian Policy in the Relaxation). The Lagrangian policy is optimal to the La-
grangian relaxation. Moreover, let the system state be the resource levels x ∈ X̄ . Using the La-
grangian policy, the following hold:

1. The set
∏n
i=1 Ii is a positive recurrent class and is aperiodic, and all states outside the set∏n

i=1 Ii are transient; and
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2. q(x) =
∏n
i=1 pi(xi) is the unique stationary distribution.

Proof. Since the Lagrangian relaxation decomposes over spokes and the Lagrangian policy is opti-
mal to each spoke problem, the Lagrangian policy is optimal to the Lagrangian relaxation as well.
From Lemma B.1, it is easy to see that the set

∏n
i=1 Ii is positive recurrent and all states outside∏n

i=1 Ii are transient. To show the aperiodicity, let x ∈ X̄ be a boundary state of the set
∏n
i=1 Ii.

Without loss of generality we assume x ∈
∏n
i=1 Ii whereas x+ei′ /∈

∏n
i=1 Ii for some spoke i′ ∈ [n].

State x stays unchanged when a request (0, i′) arrives, which occurs with probability q0i′ > 0. Thus
the chain is aperiodic.

Since the Markov chain has a single positive recurrent class
∏n
i=1 Ii, the stationary distribution

is unique. q(x) is the stationary distribution if and only if
∑

x∈X̄ q(x) = 1 and for all x ∈ X̄ ,

q(x) ·
∑
i∈[n]

[
qi0 · di

(
xi, i, 0

)
+ q0i · di

(
xi, 0, i

)]
=
∑
i∈[n]

{
1
[
xi ≥ 1

]
· q(x− ei) · q0i · di(xi − 1, 0, i)

}
+
∑
i∈[n]

{
1
[
xi ≤ m− 1

]
· q(x + ei) · qi0 · di(xi + 1, i, 0)

}
.

(66)

It is easy to see that q(x) =
∏n
i=1 pi(xi) satisfies (66) because of the flow balance constraint in (6).

Thus, q(x) =
∏n
i=1 pi(xi) is the unique stationary distribution in the Lagrangian relaxation.

Corollary B.11 shows that using the Lagrangian policy in the original problem also leads to a
unichain policy; the proof is analogous to proof of Corollary B.10.

Corollary B.11 (Lagrangian Policy in the Original Problem). Let the system state be the resource
levels x ∈ X . Using the Lagrangian policy, the set

∏n
i=1 Ii ∩X is the single positive recurrent class

and is aperiodic, and all states outside the set
∏n
i=1 Ii ∩ X are transient.

Proposition B.12 formalizes the decomposition across spokes and hubs for general networks.

Proposition B.12. The Lagrangian relaxation bound V̄ λ,µ,ν described in Section 6.2 decomposes
over spokes with

V̄ λ,µ,ν = mλ+

n∑
i=1

hλ,µ,νi +
∑

j,j′∈[J ]

qjj′ · gµjj′ ,

where gµjj′ , maxd∈[0,1]

{
rjj′(d) + d ·

(
µj′ − µj

)}
denotes the average revenue earned from a hub-to-

hub request (j, j′) as in (14), and hλ,µ,νi denotes the average revenue of an optimal policy to each
spoke i problem, which is equal to the optimal value of (67)

max
di(x,i,j)∈[0,1],
di(x,j,i)∈[0,1],
di(x,i,i

′)∈[0,1],
di(x,i

′,i)∈[0,1],
pi(x)≥0

m∑
x=0

pi(x) ·

{
J∑
j=1

[
qij · rij

(
di(x, i, j)

)
+ qji · rji

(
di(x, j, i)

)]
+

n∑
i′=1

qii′ · rii′
(
di(x, i, i

′)
)}

+

n∑
i′=1

m∑
x=0

pi(x) ·
(
νii′ · qii′ · di(x, i, i′)− νi′i · qi′i · di(x, i′, i)

)

+
J∑
j=1

µj

m∑
x=0

pi(x) ·
(
qij · di(x, i, j)− qji · di(x, j, i)

)
− λ ·

m∑
x=0

x · pi(x)

s.t.

m∑
x=0

pi(x) = 1, (67)
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pi(x) ·

(
J∑
j=1

qji · di(x, j, i) +

n∑
i′=1

qi′i · di(x, i′, i)

)

= pi(x+ 1) ·

(
J∑
j=1

qij · di(x+ 1, i, j) +
n∑

i′=1

qii′ · di(x+ 1, i, i′)

)
, ∀ x ∈ [0 :m− 1],

di(0, i, j) = 0, di(m, j, i) = 0, ∀ j ∈ [J ],

di(0, i, i
′) = 0, di(m, i

′, i) = 0, ∀ i′ ∈ [n].

Proof. To simplify the notation, in the proof we suppress the superscript λ,µ,ν throughout that
specifies the specific dual variables to use in the Lagrangian relaxation.

Since we assume the network topology is strongly connected, the Lagrangian relaxation bound
V̄ does not depend on the initial state of the system by the same argument as in Proposition 2.2.
Moreover, since we relax the capacity constraint of each hub, we can express V̄ as

V̄ = mλ+ h+
∑

j,j′∈[J ]

qjj′ · gjj′ ,

where gjj′ = maxd∈[0,1]

{
rjj′(d) + d · (µj′ − µj)

}
denotes the average revenue from a hub-to-hub

request (j, j′), and h denotes the average revenue of an optimal control to requests that involve any
of the spokes. Furthermore, h and some differential value functions v(xS, i, j), v(xS, j, i), v(xS, i, i

′)
and v(xS, j, j

′) satisfy the following Bellman equation

h+ v(xS, i, j) = max
d∈[0,1∧xi]

{
rij(d) + d ·

(
v(xS − ei)− v(xS) + µj

)}
+ v(xS)− λ ·

∑
i∈[n]

xi,

∀ i ∈ [n], j ∈ [J ],

h+ v(xS, j, i) = max
d∈[0,1∧(m−xi)]

{
rji(d) + d ·

(
v(xS + ei)− v(xS)− µj

)}
+ v(xS)− λ ·

∑
i∈[n]

xi,

∀ i ∈ [n], j ∈ [J ],

h+ v(xS, i, i
′) = max

d∈[0,1∧xi]
a1,a2∈{0,1∧(m−xi′ )}

rii′(d) + d ·
(
v(xS − ei + a1 · ei′) + νii′ − a1 · νii′

)
+ (1− d) ·

(
v(xS + a2 · ei′)− a2 · νii′

)
− λ ·

∑
i∈[n]

xi, ∀ i ∈ [n], i′ ∈ [n] \ {i},

h+ v(xS, j, j
′) = v(xS)− λ ·

∑
i∈[n]

xi, ∀ j, j′ ∈ [J ],

(68)

for all xS ∈ [0 : m]n, where v(xS) = Es[v(xS, s)] denotes the average differential value function
over request types, and the binary variables a1 and a2 in the third equation denote the decision of
adding one resource in the destination when a spoke-to-spoke request (i, i′) arrives, and the request
is fulfilled or not, respectively.

It is easy to verify that the average revenue h and the differential value functions decompose
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over spokes with

h =
∑
i∈[n]

hi,

v(xS, i, j) = vi(xi, i, j) +
∑
k 6=i

vk(xk,∅),

v(xS, j, i) = vi(xi, j, i) +
∑
k 6=i

vk(xk,∅),

v(xS, i, i
′) = vi(xi, i, i

′) + vi′(xi′ , i, i
′) +

∑
k 6=i,i′

vk(xk,∅),

v(xS, j, j
′) =

∑
k∈[n]

vk(xk,∅),

(69)

where hi denotes the average revenue of an optimal policy to each spoke i problem, and the
differential value functions vi(x, i, j), vi(x, j, i), vi(x, i, i

′), vi(x, i
′, i) and vi(x,∅) correspond to the

state with x resources in spoke i and the request type being (i, j), (j, i), (i, i′), (i′, i), or one of
any other types, respectively. Moreover, hi and the differential value functions satisfy the following
Bellman equation

hi + vi(x, i, j) = max
d∈[0,1∧x]

{
rij(d) + d ·

(
vi(x− 1)− vi(x) + µj

)}
+ vi(x)− λ · x, ∀ j ∈ [J ],

hi + vi(x, j, i) = max
d∈[0,1∧(m−x)]

{
rji(d) + d ·

(
vi(x+ 1)− vi(x)− µj

)}
+ vi(x)− λ · x, ∀ j ∈ [J ],

hi + vi(x, i, i
′) = max

d∈[0,1∧x]

{
rii′(d) + d ·

(
vi(x− 1)− vi(x) + νii′

)}
+ vi(x)− λ · x, ∀ i′ ∈ [n] \ {i},

hi + vi(x, i
′, i) = max

a∈{0,1∧(m−x)}

{
vi(x+ a)− a · νi′i

}
− λ · x, ∀ i′ ∈ [n] \ {i},

hi + vi(x,∅) = vi(x)− λ · x,
(70)

for all x ∈ [0 : m] and each spoke i, with vi(x) being the average differential value function over
request types. Here we only verify the decomposition of v(xS, i, i

′) that involves a spoke-to-spoke
request (i, i′). Suppose the average revenues and differential value functions decompose over spokes
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by (69) and (70) holds. The right-hand side of the third equation in (68) is equal to

max
d∈[0,1∧xi]

a1,a2∈{0,1∧(m−xi′ )}

rii′(d) + d ·
(
vi(xi − 1) + vi′(xi′ + a1) + νii′ − a1 · νii′

)
+ (1− d) ·

(
vi(xi) + vi′(xi′ + a2)− a2 · νii′

)
+
∑
k 6=i,i′

vk(xk)− λ ·
∑
i∈[n]

xi

= max
d∈[0,1∧xi]

rii′(d) + d ·
(
vi(xi − 1) + νii′ + max

a1∈{0,1∧(m−xi′ )}
vi′(xi′ + a1)− a1 · νii′

)
+ (1− d) ·

(
vi(xi) + max

a2∈{0,1∧(m−xi′ )}
vi′(xi′ + a2)− a2 · νii′

)
+
∑
k 6=i,i′

vk(xk)− λ ·
∑
i∈[n]

xi

(i)
= max

a∈{0,1∧(m−xi′ )}
vi′(xi′ + a1)− a · νii′

+ max
d∈[0,1∧xi]

rii′(d) + d ·
(
vi(xi − 1) + νii′ − vi(xi)

)
+ vi(xi) +

∑
k 6=i,i′

vk(xk)− λ ·
∑
i∈[n]

xi

=
∑
i∈[n]

hi + vi(xi, i, i
′) + vi′(xi′ , i, i

′) +
∑
k 6=i,i′

vk(xk,∅)

= h+ v(xS, i, i
′).

Note that (i) implies that although the provider can make the decision of adding one resource in
the destination after knowing the outcome of the fulfillment, it loses nothing if she instead makes
the decision before the outcome, by comparing the cost νii′ and the marginal value of having one
more resource in the destination. Thus we can make the decisions at the origin and destination
independently.

Finally, following the same argument as in Proposition 3.2, hi is equal to the optimal value of
(67), which is the dual formulation of the spoke problem.

For an arbitrary network, we can divide the locations into hubs and spokes and consider the
Lagrangian relaxation bound and policy in Section 6.2. Proposition 6.2 shows that the Lagrangian
relaxation provides tighter bounds than the fluid relaxation bound V F. We provide the proof here.

Proof of Proposition 6.2. The optimality condition of minµ,ν V̄
λ=0,µ,ν implies that it is equivalent

to (71), the problem of maximizing the average revenue subject to the constraints that the in-flow
and out-flow of each hub j is balanced in expectation, and the out-flow of spoke i through requests
(i, i′) is equal to the in-flow of spoke i′ through requests (i, i′) for each spoke-to-spoke connection
(i, i′).
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max
di(x,i,j)∈[0,1],
di(x,j,i)∈[0,1],
di(x,i,i

′)∈[0,1],
di(x,i

′,i)∈[0,1],
djj′∈[0,1],

pi(x)≥0

n∑
i=1

m∑
x=0

pi(x) ·
J∑
j=1

{
qij · rij

(
di(x, i, j)

)
+ qji · rji

(
di(x, j, i)

)}

+
n∑
i=1

m∑
x=0

pi(x) ·
n∑

i′=1

qii′ · rii′
(
di(x, i, i

′)
)

+
J∑
j=1

J∑
j′=1

qjj′ · rjj′(djj′)

s.t.
m∑
x=0

pi(x) = 1, ∀ i ∈ [n],

n∑
i=1

qij

m∑
x=0

pi(x) · di(x, i, j) +
J∑

j′=1

qj′j · dj′j

=

n∑
i=1

qji

m∑
x=0

pi(x) · di(x, j, i) +

J∑
j′=1

qjj′ · djj′ , ∀ j ∈ [J ],

pi(x) ·

(
J∑
j=1

qji · di(x, j, i) +
n∑

i′=1

qi′i · di(x, i′, i)

)
=

pi(x+ 1) ·

(
J∑
j=1

qij · di(x+ 1, i, j) +

n∑
i′=1

qii′ · di(x+ 1, i, i′)

)
,

∀ x ∈ [0 :m− 1], i ∈ [n],

qii′ ·
m∑
x=0

pi(x) · di(x, i, i′) = qii′ ·
m∑
x=0

pi′(x) · di′(x, i, i′), ∀ i, i′ ∈ [n],

di(0, i, j), di(0, i, i
′), di(m, j, i), di(m, i

′, i) = 0, ∀ i ∈ [n], j ∈ [J ], i′ ∈ [n].

(71)

For any optimal solution to (71), let dij =
∑m

x=0 pi(x) · di(x, i, j), dji =
∑m

x=0 pi(x) · di(x, j, i) and
dii′ =

∑m
x=0 pi(x) ·di(x, i, i′) denote the average demand values. We show these demand values plus

djj′ are feasible to the fluid relaxation. First, by the second constraint in (71) we have

n∑
i=1

qijdij +

J∑
j′=1

qj′j · dj′j =

n∑
i=1

qjidji +

J∑
j′=1

qjj′ · djj′ , ∀ j ∈ [J ], (72)

which implies that the flow at each hub is balanced. Second, summing both sides of the third
constraint over x ∈ [0 :m− 1] plus the fourth and last constraints gives

J∑
j=1

qji · dji +

n∑
i′=1

qi′i · di′i =

J∑
j=1

qijdij +

n∑
i′=1

qii′ · dii′ , ∀ i ∈ [n], (73)

which implies that the flow at each spoke is balanced as well. Thus from (72) and (73), the demand
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values dij , dji, dii′ and djj′ are feasible to the fluid relaxation. Finally, by Jensen’s inequality

V F ≥
n∑
i=1

J∑
j=1

(
qij · rij(dij) + qji · rji(dji)

)
+

n∑
i=1

n∑
i′=1

qii′ · rii′(dii′) +
J∑
j=1

J∑
j′=1

qjj′ · rjj′(djj′)

≥ min
µ,ν

V̄ λ=0,µ,ν .

In the case with general relocation times, Proposition B.13 further relax the spoke problem to
provide a tractable upper bound.

Proposition B.13. With general relocation times, the Lagrangian relaxation bound V̄ λ,µ,ν decom-
poses over spokes as

V̄ λ,µ,ν = mλ+
n∑
i=1

hλ,µ,νi +
∑

j,j′∈[J ]

qjj′ · gµjj′ ,

where gµjj′ , maxd∈[0,1]

{
rjj′(d)+d ·

(
µj′−µj−λ ·Λτjj′

)}
denotes the average revenue earned from a

hub-to-hub request (j, j′) and hλ,µ,νi denotes the average revenue of an optimal policy to each spoke

i problem. Moreover, hλ,µ,νi is no larger than ĥi which is the optimal value of (74).

max
di(x,i,j)∈[0,1],
di(x,j,i)∈[0,1],
di(x,i,i

′)∈[0,1],
di(x,i

′,i)∈[0,1],
pi(x)≥0

m∑
x=0

J∑
j=1

pi(x) · qij ·
[
rij

(
di(x, i, j)

)
+
(
µj − λΛτij

)
· di(x, i, j)

]

+
m∑
x=0

J∑
j=1

pi(x) · qji ·
[
rji

(
di(x, j, i)

)
− µj · di(x, j, i)

]

+
m∑
x=0

∑
i′ 6=i

pi(x) · qii′ ·
[
rii′
(
di(x, i, i

′)
)

+ νii′ · di(x, i, i′)
]

−
m∑
x=0

∑
i′ 6=i

pi(x) · qi′i · νi′i · di(x, i′, i) +

( m∑
x=1

pi(x)

)
· qii · r∗ii − λ ·

m∑
x=0

x · pi(x)

s.t.
m∑
x=0

pi(x) = 1, (74)

pi(x) ·

{
J∑
j=1

qji · di(x, j, i) +
∑
i′ 6=i

qi′i · di(x, i′, i)

}

= pi(x+ 1) ·

{
J∑
j=1

qij · di(x+ 1, i, j) +
∑
i′ 6=i

qii′ · di(x+ 1, i, i′)

}
, ∀ x ∈ [0 :m− 1],

di(0, i, j) = 0, di(m, j, i) = 0, ∀ j ∈ [J ],

di(0, i, i
′) = 0, di(m, i

′, i) = 0, ∀ i′ ∈ [n] \ {i}.

Proof. The decomposition is analogous to Proposition B.12. Note that compared to Proposition
B.12, the extra term λ · Λτjj′ in gµjj′ comes from the fact that the relocation (j, j′) takes Λ · τjj′
periods on average (this is because requests follow a Possion process of rate Λ that is independent
of the relocation times) and each period incurs a penalty λ.
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We now show the average revenue hλ,µ,νi of the spoke problem is no larger than ĥi. To see this,
we first set the binding condition of the spoke problem to be the sum of resources in the spoke
and transiting to it is no larger than m; then the resources that are moving out of the spoke are
irrelevant. We then allow that the resources that are moving to the spoke can be instantaneously
available at the spoke. Because a resource incurs a penalty λ per period no matter it is in the
spoke or moving to it, it is always better to keep the resources at the spoke as this increases the
opportunity to serve the requests; this yields (74). We conjecture that the relaxation works well
when incoming relocation times are not long.

The Lagrangian relaxation with the optimal dual variable corresponds to maximizing the average
revenue subject to the sum of resources that are in the spokes and transiting to the hubs no larger
than m in expectation.

C More Discussions on the Lagrangian Dual Problem

Recall that the Lagrangian dual problem (9) is

V R = min
λ≥0

V̄ λ,

which is a convex optimization problem. According to (4) and (20), V R is equal to the optimal
value of (75).

min
λ≥0,hλi ,

vλi (x,i,0),

vλi (x,0,i),

vλi (x,∅)

mλ+

n∑
i=1

hλi

s.t. hλi + vλi (x, i, 0) ≥ max
d∈[0,1∧x]

{
ri0(d) + d ·

(
vλi (x− 1)− vλi (x)

)}
+ vλi (x)− λ · x,

∀ x ≤ m, i ∈ [n],

hλi + vλi (x, 0, i) ≥ max
d∈[0,1∧(m−x)]

{
r0i(d) + d ·

(
vλi (x+ 1)− vλi (x)

)}
+ vλi (x)− λ · x,

∀ x ≤ m, i ∈ [n],

hλi + vλi (x,∅) ≥ vλi (x)− λ · x, ∀ x ≤ m, i ∈ [n].

(75)

Analogous to Proposition 3.2, V R is the optimal value of (76) as well, which is maximizing the
average revenue subject to the constraint that the expected number of resources in the hub is
non-negative.

max
di(x,i,0)∈[0,1],
di(x,0,i)∈[0,1],

pi(x)≥0

n∑
i=0

m∑
x=0

pi(x)

[
qi0 · ri0

(
di(x, i, 0)

)
+ q0i · r0i

(
di(x, 0, i)

)]

s.t.
n∑
i=1

m∑
x=0

x · pi(x) ≤ m, (76)

m∑
x=0

pi(x) = 1, ∀ i ∈ [n],
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pi(x) · q0i · di(x, 0, i) = pi(x+ 1) · qi0 · di(x+ 1, i, 0), ∀ x ∈ [0 :m− 1], ∀ i ∈ [n],

di(0, i, 0) = 0, ∀ i ∈ [n],

di(m, 0, i) = 0, ∀ i ∈ [n].

Finally, we can solve (9) efficiently using a cutting plane method (Section 8.3 of Bertsekas et al.
2003) with sub-gradients given in (34).

D Optimal Static Pricing in the Large Network Regime

In this section, we use the same Lagrangian method to derive a performance bound for any static
policy and characterize the optimal static policy in the large network limit. When we focus on
static pricing policies and relax the capacity constraint

∑n
i=1 xi ≤ m with a dual variable λ ≥ 0,

the problem again decomposes over spokes and for any λ ≥ 0, we have an upper bound V̄ S,λ on
the performance of any static policy. Let hS

i (λ) denote the performance of the spoke problem. We
have V̄ S,λ = mλ+

∑n
i=1 h

S
i (λ), and

hS
i (λ) = max

d0i∈[0,1],
di0∈[0,1],
pi(x)≥0

m∑
x=0

pi(x) ·
{
qi0 · ri0

(
di0
)
· 1[x > 0] + q0i · r0i

(
d0i

)
· 1[x < m]

}
− λ ·

m∑
x=0

x · pi(x)

s.t.
m∑
x=0

pi(x) = 1,

pi(x) · q0i · d0i = pi(x+ 1) · qi0 · di0, ∀ x ∈ [0 :m− 1].
(77)

Note that we restrict to static pricing in the spoke problem (77).
We can solve the best possible bound V S,R = minλ≥0 V̄

S,λ and compute a static policy πS(δ)
from a perturbed problem V S,R(δ) = minλ≥0 V̄

S,λ−δλ. Let V S(δ) denote the performance of policy
πS(δ) in the original problem. Analogous to Section 4, Theorem D.1 shows that πS(δ) converges to
the optimal static policy in the large network regime with a proper choice of δ.

Theorem D.1. The average revenue V S(δ) of the static pricing policy πS(δ) satisfies

0 ≤ V S,R − V S(δ) ≤ (r̄ + ω̄) · P
[
X0(δ) = 0

]
+ r̄ · δ

m− δ
,

where P
[
X0(δ) = 0

]
is the stationary probability that the hub runs out of resources in the original

problem under the policy πS(δ). Moreover, if there exist some constants q̄ > 0, β ∈ ( m
m+n , 1) and

ε > 0 such that qi0, q0i ≤ q̄
n and

(
1− β

)2 ·mini≤n γ
′
i

(
β
)
≥ ε

n
11, then

P
[
X0(δ) ≤ 0

]
≤ exp

(
− b

2
· δ2

m+ n

)
11Since the functions γi(β) are concave, if γi(β) are continuously differentiable, this is equivalent to requiring

mini≤n γ
′
i

(
m

m+n

)
≥ ε

n
·
(
m+n
n

)2
for some ε > 0.
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for some constant b > 0 when m and n grow at the same rate. Thus,

V S,R − V S(δ) ≤ O

(√
lnn

n

)

if we set δ =
√

1
b · (m+ n) · lnn.

D.1 Proof of Theorem D.1

We first rewrite the spoke problem (77). An optimal solution to (77) satisfies di0, d0i > 0, and we
let β = q0i·d0i

qi0·di0 . By the flow balance constraint in (77), we have pi(x+ 1) = β · pi(x), and hence

pi(x) = βx · pi(0), ∀ x ∈ [m]. (78)

Since these probabilities sum up to one, we have

pi(0) =

(
1 +

m∑
x=1

βx
)−1

=

{
1

m+1 if β = 1,
1−β

1−βm+1 otherwise.
(79)

The first part of the objective of hS
i (λ) can be written as

m−1∑
x=0

pi(x) ·
[
q0i · r0i

(
d0i

)
+ β · qi0 · ri0

(
di0
)]

=
(

1− pi(m)
)
·
[
q0i · r0i

(
d0i

)
+ β · qi0 · ri0

(
di0
)]
.

As a result, we can rewrite hS
i (λ) as

hS
i (λ) = max

β≥0
Am(β) · γi(β)− λ ·Bm(β), (80)

where

Am(β) = 1− pi(m) = 1− βm · pi(0) =

{
m
m+1 if β = 1,

1−βm
1−βm+1 otherwise,

and

Bm(β) =

m∑
x=0

x · pi(x) = pi(0) ·
m∑
x=1

xβx =

{
m
2 if β = 1,

βm+2m−(1+m)βm+1+β
(1−β)(1−βm+1)

otherwise.

We first provide some useful properties for Am(β) and Bm(β).

Lemma D.2 (Monotonicity). Bm(β) is strictly increasing in β ≥ 0.

Proof. For any β1 < β2 and i ∈ {1, 2}, let Zi be a discrete random variable with support [0 :m] and
density function gi(·) specified by (78) and (79) using a parameter βi. Since for any 0 ≤ x < y ≤ m,
g1(y)
g1(x) = βy−x1 < βy−x2 = g2(y)

g2(x) , Z2 dominates Z1 in the monotone likelihood ratio order (see Section

1.C of Shaked and Shanthikumar 2007). Hence, Z2 first-order stochastically dominates Z1 and as a
result, Bm(β2) = E[Z2] > E[Z1] = Bm(β1); the strict inequality is because Z1 and Z2 have distinct
density functions (see Theorem 1.A.8 of Shaked and Shanthikumar 2007).

Lemma D.3 (Uniform convergence of Am(β) and Bm(β)). Let A∞(β) =

{
1 if 0 ≤ β ≤ 1
1
β if β > 1

and
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B∞(β) =

{
β

1−β if 0 ≤ β < 1

∞ if β ≥ 1
. Then,

1. 0 ≤ A∞(β)−Am(β) ≤ 1
m+1 for all β ≥ 0;

2. 0 ≤ B∞(β)−Bm(β) ≤ (m+1)βm+1

1−β for all β ∈ [0, 1), and limm→∞B
m(β) =∞ for all β ≥ 1.

Proof. To see the first part, note that if β < 1, we have

0 ≤ A∞(β)−Am(β) =
βm − βm+1

1− βm+1
=

βm∑m
i=0 β

i
≤ 1

m+ 1
.

If β = 1, A∞(β)−Am(β) = 1− m
m+1 = 1

m+1 . If β > 1, we have

0 ≤ A∞(β)−Am(β) =
β − 1

β · (βm+1 − 1)
=

1∑m
i=0 β

i+1
≤ 1

m+ 1
.

For the second part, if β < 1, we have

0 ≤ B∞(β)−Bm(β) =
(m+ 1) · βm+1

1− βm+1
≤ (m+ 1) · βm+1

1− β
.

If β ≥ 1, it is easy to see that limm→∞B
m(β) =∞.

Lemma D.4 (Derivatives of Am(β) and Bm(β)). The derivatives of Am(β) and Bm(β) satisfy

1. 0 ≥ d
dβA

m(β) ≥ −mβm−1 for all β ∈ [0, 1); and

2. 0 ≤ d
dβB

m(β) ≤ d
dβB

∞(β) = 1
(1−β)2 for all β ∈ [0, 1).

Proof. For the first part, note that for any β ∈ [0, 1) we have

d

dβ
Am(β) =

βm−1

(1− βm+1)2
·
(

(m+ 1)β − βm+1 −m
)
.

Since 1− βm+1 = (1− β) · (1 + β + · · ·+ βm) and

(m+ 1)β − βm+1 −m = −
[
(1− β) ·m+ βm+1 − β

]
= −(1− β) · (m− β − β2 − · · · − βm)

= −(1− β)2 ·
(
m+ (m− 1)β + (m− 2)β2 + · · ·+ βm−1

)
,

we have

0 ≥ d

dβ
Am(β) = −βm−1 ·

(
m+ (m− 1)β + (m− 2)β2 + · · ·+ βm−1

)
(1 + β + · · ·+ βm)2

≥ −mβm−1,

where the last inequality is because

m+ (m− 1)β + (m− 2)β2 + · · ·+ βm−1 ≤ m · (1 + β + · · ·+ βm) ≤ m · (1 + β + · · ·+ βm)2.
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For the second part, since B∞(β)−Bm(β) = (m+1)·βm+1

1−βm+1 , we have

d

dβ
B∞(β)− d

dβ
Bm(β) =

(m+ 1)2βm

(1− βm+1)2
≥ 0.

Thus,

0 ≤ d

dβ
Bm(β) ≤ d

dβ
B∞(β) =

1

(1− β)2
,

where the first inequality is because Bm(β) is increasing in β by Lemma D.3.

D.1.1 Proof of Part One

Let λ(δ) denote an optimal solution to the perturbed problem V S,R(δ), di0 and d0i an optimal
solution to the spoke problem hS

i

(
λ(δ)

)
, and βi = q0id0i

qi0di0
. Let random variables Xi(δ) and X̃i(δ)

denote the number of resources in location i ∈ [0 : n] under the stationary distributions of policy
πS(δ) in the original and the relaxed systems12, respectively. Then,

V S(δ) =

n∑
i=1

{
qi0 · P

[
Xi(δ) ≥ 1

]
· ri0(di0) + q0i · P

[
X0(δ) ≥ 1

]
· r0i(d0i)

}

=

n∑
i=1

{
q0i · P

[
X0(δ) ≥ 1

]
· d0i

di0
· ri0(di0) + q0i · P

[
X0(δ) ≥ 1

]
· r0i(d0i)

}

=

n∑
i=1

P
[
X0(δ) ≥ 1

]
·
{
q0i · r0i(d0i) + βi · qi0 · ri0(di0)

}

= P
[
X0(δ) ≥ 1

]
·
n∑
i=1

γi(βi),

(81)

where the second equality is from the flow balance equation q0i ·P[X0(δ) ≥ 1] · d0i = qi0 ·P[Xi(δ) ≥
1] · di0, and the last equality is because di0 and d0i are optimal to γi(βi).

On the other hand, analogous to Section 4.2, V S,R(δ) is equal to the performance of πS(δ) in
the relaxed system, thus

V S,R(δ) =

n∑
i=1

Am(βi)γi(βi) ≤
n∑
i=1

γi(βi). (82)

Combining (81) and (82) implies

V S,R(δ)− V S(δ) ≤
(

1− P
[
X0(δ) ≥ 1

])
·
n∑
i=1

γi(βi) ≤ P
[
X0(δ) = 0

]
· (r̄ + ω̄) ·

n∑
i=1

q0i, (83)

where the last inequality is due to Lemma A.4. Finally, analogous to Lemma 4.2, we have

V S,R(δ) ≤ V S,R ≤ V S,R(δ) + r̄ · δ

m− δ
. (84)

12We consider the same relaxed system as in Section 4.2.
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From (83) and (84) we have

V S,R − V S(δ) =
(
V S,R − V S,R(δ)

)
+
(
V S,R(δ)− V S(δ)

)
≤ (r̄ + ω̄) · P

[
X0(δ) = 0

]
+ r̄ · δ

m− δ
,

which is analogous to Theorem 4.1.

D.1.2 Proof of Part Two

From Corollary 4.5 we have

P
[
X0(δ) = 0

]
≤ P

[
X̃0(δ) ≤ 0

]
= P

[ n∑
i=1

X̃i(δ) ≥ m
]
.

Since X̃i(δ) are truncated geometric random variables with success probability 1−βi and end point
m, they are log-concave. If E

[
X̃i(δ)

]
≤ c for some constant c > 0 and all i ∈ [n], from Proposition

4.6 and Corollary 4.7, we have

P
[
X̃0(δ) ≤ 0

]
≤ exp

(
− b

2
· δ2

m+ n

)

with b = 1
1+c . Moreover, if we choose δ =

√
m+n
b · lnn, then V S − V S(δ) ≤ O

(√
lnn
n

)
when m and

n grow at the same rate. We now show that under the additional assumptions regarding qij and
γi(β), we can find such a constant c.

Let βmi (λ) denote an optimal solution to the spoke problem hS
i (λ) with some λ ≥ 0. Lemma

D.5 shows that βmi (λ) shrinks towards zero when λ becomes large.

Lemma D.5. For any λ > 0 and i ∈ [n], βmi
(
λ
)
≤ 2q0i·(r̄+ω̄)

λ+2q0i·(r̄+ω̄) < 1 when m is large enough.

Proof. Let hS
i

(
β, λ

)
= Am(β)γi(β) − λBm(β). It suffices to show that hS

i

(
β, λ

)
≤ hS

i

(
0, λ
)

= 0 for

all β ≥ β̄ , 2q0i·(r̄+ω̄)
λ+2q0i·(r̄+ω̄) and large enough m. Since limm→∞B

m
(
β̄
)

= β̄
1−β̄ by Lemma D.3, there

exists some m̄ ∈ N+ such that for all m ≥ m̄, Bm
(
β̄
)
≥ 1

2 ·
β̄

1−β̄ . Thus, for any β ≥ β̄ and m ≥ m̄,

hS
i

(
β, λ

)
= Am(β)γi(β)− λBm(β) ≤ q0i · (r̄ + ω̄)− λBm

(
β̄
)
≤ q0i · (r̄ + ω̄)− λ

2
· β̄

1− β̄
= 0,

where the first inequality is due to the facts that Am(β) ≤ 1, γi(β) ≤ q0i · (r̄+ ω̄) from Lemma A.4,
and Bm

(
β̄
)

is increasing in β by Lemma D.2.

Lemma D.6 shows that βmi (λ) is large when λ is small.

Lemma D.6. For any β̃ < 1, βmi (λ) > β̃ if λ < (1− β̃)2γ′i(β̃) and m is large enough.

Proof. Let ε = (1 − β̃)2γ′i(β̃) − λ > 0 and δ = 1
2 ·

ε
(r̄+ω̄)·(qi0+q0i)

. Since by Lemmas D.3 and D.4,

Am(β) and d
dβA

m(β) converge to 1 and 0 uniformly on [0, β̃] when m grows to infinity, there exists

a constant m independent of spoke i such that for all m ≥ m and β ≤ β̃, Am(β) ≥ 1 − δ and
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d
dβA

m(β) ≥ −δ. Thus, the derivative of the objective of the spoke problem satisfies

d

dβ

(
Am(β)γi(β)− λBm(β)

)
=
( d

dβ
Am(β)

)
γi(β) +Am(β)γ′i(β)− λ d

dβ
Bm(β)

≥− δ · γi(β) + (1− δ) · γ′i(β)− λ d

dβ
Bm(β)

(i)

≥ γ′i(β)− λ

(1− β)2
− δ · (r̄ + ω̄) · (qi0 + q0i)

(ii)

≥ ε

(1− β)2
− ε

2

> 0,

where (i) is because d
dβB

m(β) ≤ 1
(1−β)2 by Lemma D.4 and γi(β) ≤ q0i(r̄+ ω̄) and γ′i(β) ≤ qi0(r̄+ ω̄)

by Lemma A.4, and (ii) is from the definitions of ε and δ. Therefore, the objective is strictly
increasing in [0, β̃] and as a result, βmi (λ) > β̃ when m ≥ m.

Let λ(δ) denote an optimal solution to the perturbed problem V S,R(δ). First, we have λ(δ) ≥ ε
n .

If not, then from Lemma D.6, βmi (λ(δ)) > β for all i ∈ [n] when m is large enough. Since Bm(β) is

increasing in β by Lemma D.2,
∑n

i=1B
m
(
βmi (λ(δ))

)
≥ nBm

(
β
)
. Moreover, since limm→∞B

m(β) =
β

1−β for all β < 1 and
β

1−β >
m

m+n

1− m
m+n

= m
n ,
∑n

i=1B
m
(
βmi (λ(δ))

)
> m when m is large enough. But

this contradicts with the fact that
∑n

i=1B
m
(
βmi (λ(δ))

)
≤ m − δ by the optimality condition of

λ(δ). Hence, λ(δ) ≥ ε
n , and from Lemma D.5, we have

βmi
(
λ(δ)

)
≤ 2q0i · (r̄ + ω̄)

λ(δ) + 2q0i · (r̄ + ω̄)
≤ β̄ ,

2q̄ · (r̄ + ω̄)

ε+ 2q̄ · (r̄ + ω̄)
< 1.

Finally, letting c = β̄
1−β̄ , we have E

[
X̃i(δ)

]
= Bm

(
βmi (λ(δ))

)
≤ βmi (λ(δ))

1−βmi (λ(δ)) ≤
β̄

1−β̄ = c.

D.2 Proof of Proposition 5.1

Since spokes are identical, we drop the index i and let γ(β) = γi(β) and hS(λ) = hS
i (λ) for ease of

notation. First, it is easy to see that V F = γ̂(1) and thus V (πF) = m
m+n γ̂(1).

Let ρ = m
n and λ̂ = nλ. Then

V S,R = min
λ≥0

{
mλ+ n · hS(λ)

}
= min

λ≥0

{
mλ+ n ·max

β≥0

{
Am(β) · γ(β)− λ ·Bm(β)

}}
= min

λ̂≥0

{
ρλ̂+ max

β≥0

{
Am(β) · γ̂(β)− λ̂ ·Bm(β)

}}
.

Lemma D.7 shows that solving the problem with m =∞ provides an upper bound on V S,R in the
large network limit.
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Lemma D.7 (Interchange of operations).

lim
n→∞

V S,R ≤ min
λ̂≥0

{
ρλ̂+ max

β≥0

{
A∞(β) · γ̂(β)− λ̂ ·B∞(β)

}}
. (85)

We prove Lemma D.7 at the end of this section. In the following, we optimize the right-hand
side of (85). Note that

min
λ̂≥0

{
ρλ̂+ max

β≥0

{
A∞(β) · γ̂(β)− λ̂ ·B∞(β)

}}
= min

λ̂≥0
max
β∈[0,1]

{
ρλ̂+ γ̂(β)− λ̂ · β

1− β

}
= max
β∈[0,1]

{
γ̂(β) s.t.

β

1− β
≤ ρ
}
,

(86)

where the first equation is because we can restrict the domain to β ∈ [0, 1] by Lemma D.9. Since
γ̂(β) is concave by Lemma A.3, the second equation is due to the fact that the right-hand side is
a convex program and strong duality holds. Since γ̂(β) together with β

1−β is increasing in β by

Lemma A.2, the optimal solution β∗ satisfies β∗

1−β∗ = ρ and thus β∗ = ρ
1+ρ = m

m+n . Combining

(85) and (86), we have limn→∞ V
S,R ≤ γ̂(β∗) = γ̂

(
m

m+n

)
, and this provides an upper bound on the

performance of any static pricing policy in the large network regime.
On the other hand, for any n, let ρ̃ = ρ − O

(√
lnn/n

)
, β̃ = ρ̃

1+ρ̃ , and d̃i0 and d̃0i an optimal

solution to γ̂(β̃). Based on the analysis in Appendix D.1 (especially equation (81) and Section
D.1.2), the performance of the static policy using d̃i0 and d̃0i converges to the upper bound γ̂

(
m

m+n

)
in the large network regime. Thus, the bound is tight and V S = γ̂

(
m

m+n

)
in the limit.

D.2.1 Proof of Lemma D.7

We let hm
(
β, λ̂

)
, Am(β)γ̂(β) − λ̂Bm(β), hm

(
λ̂
)

= max
β≥0

hm
(
β, λ̂

)
and βm

(
λ̂
)

denote an optimal

solution to hm
(
λ̂
)
. Let h∞

(
β, λ̂

)
, A∞(β)γ̂(β) − λ̂B∞(β) and h∞

(
λ̂
)

and β∞
(
λ̂
)

denote the

maximum value and point over β for a given λ̂. From Lemma A.4, we have γ̂(β) ≤ c , n ·q0i ·(r̄+ω̄)
for all β ≥ 0.

Lemma D.8. For any λ̂ > 0, βm
(
λ̂
)
≤ 2c

λ̂+2c
< 1 when m is large enough.

Proof. This is exactly Lemma D.5.

Lemma D.9. β∞
(
0
)

= 1 and β∞
(
λ̂
)
≤ c

λ̂+c
< 1 for any λ̂ > 0.

Proof. For any λ̂ > 0 and β ≥ β̄ = c
λ̂+c

, analogous to the proof of Lemma D.5, we have

h∞
(
β, λ̂

)
= A∞(β)γ̂(β)− λ̂B∞(β) ≤ c− λ̂ · β̄

1− β̄
= 0 = h∞

(
0, λ̂
)
.

Thus, β∞
(
λ̂
)
≤ c

λ̂+c
. Suppose λ̂ = 0. Then h∞

(
β, λ̂

)
= A∞(β)γ̂(β). If β ≤ 1, A∞(β)γ̂(β) = γ̂(β) is

increasing by Lemma A.2. If β ≥ 1, A∞(β)γ̂(β) = γ̂(β)
β with derivative d

dβ

(
γ̂(β)
β

)
= β·γ̂′(β)−γ̂(β)

β2 ≤ 0

because the numerator is non-positive by Lemma A.5. Thus, β∞
(
0
)

= 1.
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Lemma D.10. For any λ̂ ≥ 0, limm→∞ h
m
(
λ̂
)

= h∞
(
λ̂
)
.

Proof. If λ̂ > 0, from Lemmas D.8 and D.9, we can restrict the domain to be β ∈
[
0, 2c

2c+λ̂

]
. From

Lemma D.3, Am(β) and Bm(β) converge to A∞(β) and B∞(β) uniformly on β ∈
[
0, 2c

2c+λ̂

]
as m

goes to infinity; this implies limm→∞ h
m
(
λ̂
)

= h∞
(
λ̂
)
. If λ̂ = 0, the result follows analogously

because Am(β) converges to A∞(β) uniformly on β ≥ 0 by Lemma D.3.

Now we are ready to prove Lemma D.7. By the definition of V S,R, for any λ̂ ≥ 0 we have

V S,R ≤ ρλ̂+ max
β≥0

{
Am(β) · γ̂(β)− λ̂ ·Bm(β)

}
.

Taking limits on both sides and noting Lemma D.10, we have

lim
n→∞

V S,R ≤ ρλ̂+ max
β≥0

{
A∞(β) · γ̂(β)− λ̂ ·B∞(β)

}
.

Finally, minimizing the right-hand side over λ̂ ≥ 0 gives the desired result.

D.3 More Details on Example 5.1

Since qi0 = q0i = 1
2n and all private values are uniformly distributed on [0, 1], γi(β) = 1

2n ·
β

1+β and

d0i(β) = β
1+β and di0(β) = 1

1+β are optimal to γi(β). Since spokes are identical, we drop the index

i and let γ(β) = γi(β) for ease of notation. Let ρ = m
n = 2

3 , γ̂(β) = n · γ(β) = 1
2 ·

β
1+β and λ̂ = nλ.

Letting β∗ = ρ
1+ρ = m

m+n = 2
5 , from Proposition 5.1 and the proof therein, γ̂(β∗) = 1

7 is a tight
upper bound on the performance of the optimal static policy in the large network limit, and the
asymptotically optimal static policy converges to di0(β∗) = 5

7 and d0i(β
∗) = 2

7 .
We now provide a lower bound on the Lagrangian relaxation bound V R and show that it is

strictly larger than V S,R in the large network regime. Since limn→∞
{
V R−V OPT

}
= 0 by Corollary

4.7, this implies that no static pricing policy is asymptotically optimal in the regime. We can
also get a simple dynamic pricing policy that is strictly better than the optimal static policy as a
byproduct.

Since the number of resources per location is relatively small, it is beneficial to keep the number
of resources in each spoke to be small, thus retaining some resources in the hub. Motivated by this,
we consider a family of cutoff policies with some parameter k that keeps at most k resources in a
spoke and uses static controls to manage these resources. Analogously, we can provide a bound on
the performance of any cutoff policy with a parameter k by relaxing the constraint that the hub
has non-negative resources with a dual variable λ ≥ 0; the best performance bound is given by

V k,R = min
λ̂≥0

{
ρλ̂+ max

β≥0

{
Ak(β) · γ̂(β)− λ̂ ·Bk(β)

}}
,

which is equivalent to maximizing the average revenue subject to the constraints that the expected
number of resources in the hub is non-negative and we restrict to cut-off policies. The max-min
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inequality implies

V k,R ≥ max
β≥0

min
λ̂≥0

{
ρλ̂+Ak(β) · γ̂(β)− λ̂ ·Bk(β)

}
= max

β≥0

{
Ak(β)γ̂(β) s.t. Bk(β) ≤ ρ

}
≥ Ak

(
β̃
)
γ̂
(
β̃
)

where β̃ : Bk
(
β̃
)

= ρ.

Take k = 2. We can solve β̃ =
√

33−1
8 ≈ 0.593 from B2

(
β̃
)

= 2β̃2+β̃

β̃2+β̃+1
= ρ = 2

3 . Since V R ≥ V k,R for

any k ∈ N, we have

V R ≥ V k=2,R ≥ Ak=2
(
β̃
)
γ̂
(
β̃
)
≈ 0.152 >

1

7
≥ V S,R.

Finally, analogous to the discussion at the end of Section D.2, we can construct cut-off policies
with asymptotic performance equal to Ak=2

(
β̃
)
γ̂
(
β̃
)

by using a perturbed β = β̃ −O
(√

lnn/n
)
.

E Performance Analysis of Uniformly Related Hubs

In this section, we analyze the performance of policy π(δ) for the special case with uniformly related
hubs as described in Definition E.1.

Definition E.1 (Uniformly Related Hubs). A network with uniformly related hubs is a hub-and-spoke
network with multiple hubs where:

1. for each spoke i ∈ [n], the revenue functions rij(d) and rji(d) are identical across hubs, i.e.,

rij(d) are identical across j ∈ [J ] and so are rji(d);

2. for each spoke i ∈ [n], the request rates satisfy qij = ci ·qji ≥ 0 for all hubs and some constant

ci > 0;

3. for any two hubs j and j′, the request rates and the maximum points of the revenue functions

as defined in Assumption 2.1 satisfy d∗jj′ · qjj′ = d∗j′j · qj′j .

Assumption E.1 is a form of symmetry in which, for each spoke, the revenue functions and ratio
of requests are identical across hubs. We allow, however, revenue functions and request rates to be
different across spokes. Note that a sufficient condition for part 3 is that, for any two hubs j and j′,
the request rates satisfy qjj′ = qj′j and the revenue functions satisfy rjj′(d) = rj′j(d). Proposition
E.1 shows that with uniformly related hubs, µj = 0 for all j ∈ [J ] constitutes an optimal solution
to (16) (this is equivalent to the flow balance constraint in (16) being redundant) and the controls
di(x, i, j) and di(x, j, i) in the Lagrangian policy derived from (16) are identical across hubs. We
can show that when hubs are uniformly related, at optimality, the flow between each hub-spoke
pair is balanced. Summing over each spoke we obtain that hubs are balanced. Moreover, using the
Lagrangian policy in the original system, we obtain a unique stationary distribution with a special
form.

Proposition E.1. For a network with uniformly related hubs, the following properties hold:

(a) The flow balance constraint of (16) is redundant;
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(b) For the Lagrangian policy π(δ), all controls di(x, i, j) and di(x, j, i) are identical across hubs

j and djj′ = d∗jj′ for all hub-to-hub requests;

(c) In the original system, the Markov chain with the policy π(δ) has a single recurrent class C

and is aperiodic; thus with this policy we obtain a unique stationary distribution over states,

which we denote by P
(
xH,xS

)
, where xH = (xj)j∈[J ] ∈ NJ and xS = (xi)i∈[n] ∈ Nn denote the

number of resources in the hubs and the spokes, respectively;

(d) P(·) is reversible in C; and

(e) Conditioned on a state xS = (xi)i∈[n] of the spokes, P(·) is uniform across the resources in

the hubs, i.e., P
(
xH,xS

)
= P

(
x′H,xS

)
for any xH = (xj)j∈[J ] ∈ NJ and x′H = (x′j)j∈[J ] ∈ NJ

with
∑

j∈[J ] xj =
∑

j∈[J ] x
′
j = m−

∑
i∈[n] xi.

We prove Proposition E.1 at the end of this section. Part (e) of this result implies that the
number of resources in the spokes xS only provides information on the number of resources in
the hubs xH through their summations

∑
i∈[n] xi, and vice versa; this follows directly from the

reversibility property in part (d). We will use this fact to bound the probability that any hub is
depleted in the following analysis. In particular, we consider a high multiplicity model and we show
with a particular choice of the parameter δ, the depletion probability P

[
Xj(δ) = 0

]
of each hub j

of the original system diminishes to zero as the number of spokes n increases, the ratio m
n remains

fixed, and the number of hubs J grows at rate o(n).
In the high multiplicity model, we assume the n spokes can be divided into S distinct spoke

types and the number of spokes of each type s is fixed to be a proportion αs > 0 of n. All spokes
of a given type have the same revenue functions and have the same arrival rates into and out of
each hub (these rates may vary across hubs).

From Corollary 4.5 and Proposition 4.6, we have that the probability that all hubs run out
of resources in the original system goes to zero when n increases and the ratio m

n remains fixed.
Because the resources in the hubs are uniformly distributed according to Proposition E.1, part (e),
the depletion probability of each hub j of the original system diminishes to zero as well, as we show
in Proposition E.2.

Proposition E.2. Let α = mins∈[S] αs and let b = 1
1+m/(α·n) . In the high multiplicity model, the

depletion probabilities of each hub j of the original system are equal and satisfy

P
[
Xj(δ) = 0

]
≤ exp

(
− b

8
· δ2

m+ n− 1
2δ

)
+

J − 1
1
2δ + J − 1

.

Putting Theorem 6.1 and Proposition E.2 together, we obtain the following result.

Corollary E.3. Under the high multiplicity model, the Lagrangian policy π(δ) with 0 ≤ δ < m
satisfies

V π(δ) ≤ V OPT ≤ V π(δ) + r̄ · δ

m− δ
+ (r̄ + ω̄) ·

{
exp

(
− b

8
· δ2

m+ n− 1
2δ

)
+

J − 1
1
2δ + J − 1

}
,

where b is as in Proposition E.2. Moreover, if m and n grow at the same rate and J grows at a
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sub-linear rate with J = o(n), by choosing δ = max

{
√
nJ,

√
4
b · (m+ n) · lnn

}
, we have

V OPT − V π(δ) ≤ O

(
max

{√
J

n
,

√
lnn

n

})
.

E.1 Proof of Proposition E.1

Parts (a) & (b): We first show in Lemma E.4 that the Lagrangian policies with dual variables
µj = 0 for all j ∈ [J ] and any λ ≥ 0 have the desired properties as stated in Proposition E.1, parts
(a) and (b).

Lemma E.4. Let di(x, i, j), di(x, j, i), and djj′ be the controls of a Lagrangian policy with dual
variables µj = 0 for all j ∈ [J ] and some λ ≥ 0. We have

1. di(x, i, j) and di(x, j, i) are identical across hubs; and

2. djj′ = d∗jj′; and

3. the in-flow and out-flow of each hub j is balanced in expectation, i.e., for each j ∈ [J ],

n∑
i=1

qij

m∑
x=0

pi(x) · di(x, i, j) +

J∑
j′=1

qj′j · dj′j =

n∑
i=1

qji

m∑
x=0

pi(x) · di(x, j, i) +

J∑
j′=1

qjj′ · djj′ .

Proof. First, djj′ = argmaxd∈[0,1]

{
rjj′(d) + d · (µj′ − µj)

}
= d∗jj′ when µj = 0 for all j ∈ [J ]. Next,

let pi(x) be an optimal probability distribution to the spoke i problem. The controls di(x, j, i) and
di(x+ 1, i, j) are optimal to the concave problem

max
dij ,dji∈[0,1]

pi(x) ·
J∑
j=1

qji · rji(dji) + pi(x+ 1) ·
J∑
j=1

qij · rij(dij)

s.t. pi(x) ·
J∑
j=1

qji · dji = pi(x+ 1) ·
J∑
j=1

qij · dij .

Since rij(d) and rji(d) are strictly concave by Assumption 2.1, the solution is unique. Moreover,
since these revenue functions are identical across hubs by Definition E.1, Jensen’s inequality implies

that di(x, i, j) and di(x, j, i) are identical across hubs. Otherwise the average controls
∑J
j=1 qji·dji∑J
j=1 qji

and
∑J
j=1 qij ·dij∑J
j=1 qij

are feasible and yield a strictly better objective. Finally, summing up the flow

balance constraint in (15):

pi(x) ·
J∑
j=1

qji · di(x, j, i) = pi(x+ 1) ·
J∑
j=1

qij · di(x+ 1, i, j)

on both sides over x ∈ [0 : m − 1] and noting that di(0, i, j) = 0 and di(m, j, i) = 0 for all j ∈ [J ],
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we have
m∑
x=0

pi(x) ·
J∑
j=1

qji · di(x, j, i) =

m∑
x=0

pi(x) ·
J∑
j=1

qij · di(x, i, j),

which implies that the flow is balanced for each spoke. Since the controls are identical across hubs
and the request rates satisfy qij = ci · qji for all j ∈ [J ] and some constant ci > 0 by Definition E.1,
the flow between each hub-spoke pair is balanced, i.e., for any j ∈ [J ] and i ∈ [n]

m∑
x=0

pi(x) · qji · di(x, j, i) =
m∑
x=0

pi(x) · qij · di(x, i, j).

Summing both sides over spokes plus the fact that djj′ = d∗jj′ and the third condition of Definition
E.1 implies that the flow is balanced at each hub.

To show the flow balance constraint of (16) is redundant, it suffices to show the constraint
holds by itself if we solve (16) ignoring this constraint. This problem corresponds to minimizing
the objective of (16) over λ ≥ 0 while keeping µj = 0 fixed for all j ∈ [J ]. Lemma E.4 indicates
that the flow balance constraint indeed holds by itself, and all the properties of the controls stated
in parts (a) and (b) are satisfied.

Part (c): The properties of the controls stated in parts (a) and (b) imply that the resulting Markov
chain under the Lagrangian policy enjoys some helpful properties. Let xH = (xj)j∈[J ] ∈ NJ and
xS = (xi)i∈[n] ∈ Nn denote the number of resources in the hubs and the spokes, respectively, and let

the system state be the resource levels (xH,xS) ∈ NJ+n. Due to the assumption that the network
topology is strongly connected and the fact that the controls for requests between a hub and a
spoke are identical across the hubs, it is easy to see the Markov chain with the policy π(δ) has a

single recurrent class C =
{

(xH,xS) ∈ Nn+J :
∑

i∈[n] xi +
∑

j∈[J ] xj = m, xi ∈ Ii for all i ∈ [n]
}

and

is aperiodic. Hence the Lagrangian policy is a unichain policy, and with this policy the limiting
distribution converges to a unique stationary distribution, which we denote by P

(
xH,xS

)
, indepen-

dent of the initial state.

Part (d): We say that P(·) is reversible in C if for any two states (xH,xS), (x′H,x
′
S) ∈ C,

P
(
xH,xS

)
· p
(
xH,xS,x

′
H,x

′
S

)
= P

(
x′H,x

′
S

)
· p
(
x′H,x

′
S,xH,xS

)
,

where p
(
xH,xS,x

′
H,x

′
S

)
denotes the transition probability from a state (xH,xS) to a state (x′H,x

′
S)

with the Lagrangian policy. This part is a direct consequence of Theorem 6.5.1 in Durrett (2010),
which provides a necessary and sufficient condition for an irreducible Markov chain to have a
reversible measure.

Lemma E.5 (Theorem 6.5.1 in Durrett 2010). Consider an irreducible Markov chain with states
denoted by x and transition probabilities denoted by p. A necessary and sufficient condition for the
existence of a reversible measure is that

1. p(x,x′) > 0 implies p(x′,x) > 0 for any two states x and x′; and

2. for any loop of states x0,x1, · · · ,xN = x0 with
∏N
k=1 p(xk,xk−1) > 0,

∏N
k=1

p(xk−1,xk)
p(xk,xk−1) = 1.

We show the transition probabilities p induced by the Lagrangian policy satisfy the conditions
in Lemma E.5 within the recurrent class C. The first part simply follows from the fact that
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qjj′ · d∗jj′ = qj′j · d∗j′j from part 3 of Definition E.1, and di(x − 1, j, i), di(x, i, j) > 0 for any x ∈ Ii
due to part (b).

We now prove the second part. Let sk denote the request that induces the transition from state
xk to xk+1, s̃k denote the reverse trip of sk, and xk,i denote the number of resources in spoke i
when the state is xk. Let Sh =

{
sk = (j, j′) : j, j′ ∈ [J ]

}
denote the set of requests between the

hubs and Si =
{
sk = (i, j) or (j, i) : j ∈ [J ]

}
denote the set of requests between a hub and spoke i.

By partitioning requests into these sets, it is equivalent to show that∏
k:sk∈Sh

qsk · d
∗
sk︸ ︷︷ ︸

εh

·
∏
i∈[n]

∏
k:sk∈Si

qsk · di
(
xk,i, sk

)
︸ ︷︷ ︸

εi

=
∏

k:sk∈Sh

qs̃k · d
∗
s̃k︸ ︷︷ ︸

ε′h

·
∏
i∈[n]

∏
k:sk∈Si

qs̃k · di
(
xk+1,i, s̃k

)
︸ ︷︷ ︸

ε′i

.

It suffices to show that εh = ε′h and εi = ε′i for all i ∈ [n]. εh = ε′h is clear from the fact that
qjj′ · d∗jj′ = qj′j · d∗j′j in part 3 of Definition E.1. To see that εi = ε′i for any i ∈ [n], note that
x0 = xN implies that x0,i = xN,i, i.e., the resources transiting out of spoke i equals the resources
transiting into spoke i. Based on this, it is easy to show that

∏
k:sk∈Si qsk =

∏
k:sk∈Si qs̃k from part

2 of Definition E.1, and
∏
k:sk∈Si di

(
xk,i, sk

)
=
∏
k:sk∈Si di

(
xk+1,i, s̃k

)
from part (b) of Proposition

E.1; thus εi = ε′i.

Part (e): Suppose spoke i is connected to hubs j and j′ and xj ≥ 1. From part (d), the Markov
chain is reversible and hence we have

P
(
xH,xS

)
· qji · di

(
xi, j, i

)
= P

(
xH − ej ,xS + ei

)
· qij · di

(
xi + 1, i, j

)
,

and
P
(
xH − ej + ej′ ,xS

)
· qj′i · di

(
xi, j

′, i
)

= P
(
xH − ej ,xS + ei

)
· qij′ · di

(
xi + 1, i, j′

)
.

Since the controls di(x, i, j) and di(x, j, i) are identical across hubs by part (b) and the request
rates satisfy qij/qji = qij′/qj′i = ci > 0 from Definition E.1, P

(
xH,xS

)
= P

(
xH − ej + ej′ ,xS

)
. The

general result follows from the fact that the network topology is strongly connected.

E.2 Proof of Proposition E.2

First, for the high multiplicity model, since the expected number of resources in the spokes of the
relaxed system is no larger than m−δ, we have E

[
X̃i(δ)

]
≤ m

α·n for all i ∈ [n]. Let random variables

X0(δ) =
∑J

j′=1Xj′(δ) and X̃0(δ) denote the sum of resources in the hubs of the original system and
the relaxed system under the stationary distributions of the Lagrangian policy π(δ). Proposition
E.1(e) implies that conditional on the total number of resources in the hubs, the distribution of
resources across the hubs is uniform. Therefore, we have

P
[
Xj(δ) = 0

∣∣∣∣X0(δ) = k

]
=

(
k+J−2
J−2

)(
k+J−1
J−1

) =
J − 1

k + J − 1
.
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Thus,

P
[
Xj(δ) = 0

]
=

m∑
k=0

P
[
X0(δ) = k

]
· P
[
Xj(δ) = 0

∣∣∣X0(δ) = k
]

=
m∑
k=0

P
[
X0(δ) = k

]
· J − 1

k + J − 1
= E

[
J − 1

X0(δ) + J − 1

]

≤ E

[
1[X0(δ) ≤ c] + 1[X0(δ) > c] · J − 1

X0(δ) + J − 1

]

≤ P[X̃0(δ) ≤ c] +
J − 1

c+ J − 1
,

(87)

for any constant c ≥ 0, where the last inequality is because X0(δ) �FOSD X̃0(δ) from Lemma 4.4,
dropping the second indicator, and using that (J − 1)/(x+ J − 1) is decreasing for x ≥ 0.

Let µ = E
[∑n

i=1 X̃i(δ)
]

be the expected number of resources in the spokes of the relaxed system.

Since the policy π(δ) is solved from the perturbed Lagrangian relaxation, we have 0 < µ ≤ m− δ.
For any γ ∈ [0, 1], set c = γ · (m− µ) in (87) and we have

P
[
Xj(δ) = 0

]
≤ P

[
X̃0(δ) ≤ γ · (m− µ)

]
+

J − 1

γ · (m− µ) + J − 1

≤ P
[
X̃0(δ) ≤ γ · (m− µ)

]
+

J − 1

γδ + J − 1
.

(88)

We can bound the first term in (88) using the concentration inequality developed in Lemma A.12

of Appendix A.10. Specifically, applying Lemma A.12 with λ = m−γ·(m−µ)
µ and b = 1

1+m/(α·n) gives

P
[
X̃0(δ) ≤ γ · (m− µ)

]
= P

[
n∑
i=1

X̃i(δ) ≥ m− γ · (m− µ)

]

≤ exp

{
− b ·

(
λµ− µ+ (n+ µ) · ln

(
1− λµ− µ

λµ+ n

))}

= exp

{
− b ·

(
(1− γ) · (m− µ) + (n+ µ) · ln

(
n+ µ

m+ n− γ · (m− µ)

))}

= exp

{
b ·

(
(n+ µ) · ln

(
m+ n− γ · (m− µ)

n+ µ

)
− (1− γ) · (m− µ)︸ ︷︷ ︸

♣

)}
.

(89)
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Since lnx ≤ x−1√
x

for x ≥ 1, we have

♣ ≤ (n+ µ) · (1− γ) · (m− µ)

n+ µ
·
√

n+ µ

m+ n− γ · (m− µ)
− (1− γ) · (m− µ)

= (1− γ) · (m− µ) ·
(√

1− (1− γ) · (m− µ)

m+ n− γ · (m− µ)
− 1

)
≤ − (1− γ)2 · (m− µ)2

2 · (m+ n− γ · (m− µ))

≤ − (1− γ)2 · δ2

2 · (m+ n− γδ)
,

where the second-to-last inequality is due to
√

1− x− 1 ≤ −x
2 for x ≤ 1. Thus from (89) we have

P
[
X̃0(δ) ≤ γ · (m− µ)

]
≤ exp

(
− b

2
· (1− γ)2 · δ2

m+ n− γδ

)
. (90)

Combining (88) and (90) we have

P
[
Xj(δ) = 0

]
≤ exp

(
− b

2
· (1− γ)2 · δ2

m+ n− γδ

)
+

J − 1

γδ + J − 1
.

Letting γ = 1
2 gives the desired result.

F Exponential Relocation Times in a Single Hub Network

With exponential relocation times, the Lagrangian simplifies greatly as we only need to track the
number of resources on each route and in each location. Suppose we have one hub and n spokes,
and the relocation times for requests (i, 0) and (0, i) follow independent exponential distributions
with mean values τi0 and τ0i, respectively. Let Λ =

∑
i∈[n] ηi0 + η0i denote the total request rate.

For each spoke i problem, we let xi denote the number of resources in the spoke and x0i denote
the number of resources in transit from the hub to the spoke; we require that xi + x0i ≤ m
to bound the state space. The resources that are leaving the spoke are irrelevant to the spoke
problem. Suppose the current state is (xi, x0i) and no request is fulfilled in the current period. Let
ρ(xi, x0i, x̃i, x̃0i) denote the transition probability that the next period starts with a state (x̃i, x̃0i).
We have

ρ(xi, x0i, x̃i, x̃0i) =


(
x0i
x̃0i

)(
Λ

Λ+1/τ0i

)x̃0i
(

1/τ0i
Λ+1/τ0i

)x0i−x̃0i

if x̃0i ≤ x0i and x̃i + x̃0i = xi + x0i,

0 otherwise,

because each resource on (0, i) will reach spoke i with probability 1/τ0i
Λ+1/τ0i

and keep relocating with

probability Λ
Λ+1/τ0i

by the end of the current period. The spoke problem is:

hλi = max
di(xi,x0i,i,0)∈[0,1],
di(xi,x0i,0,i)∈[0,1],

pi(xi,x0i)≥0

∑
(xi,x0i)

pi(xi, x0i) ·
{
qi0 ·

[
ri0

(
di(xi, x0i, i, 0)

)
− λ · di(xi, x0i, i, 0) · Λ · τi0

]
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+ q0i · r0i

(
di(xi, x0i, 0, i)

)
− λ · (xi + x0i)

}
s.t.

∑
(xi,x0i)∈N2:xi+x0i≤m

pi(xi, x0i) = 1,

pi(xi, x0i) =
∑

(x̃i,x̃0i)

pi(x̃i, x̃0i) ·
[
qi0 · di(x̃i, x̃0i, i, 0) · ρ(x̃i − 1, x̃0i, xi, x0i)

+ q0i · di(x̃i, x̃0i, 0, i) · ρ(x̃i, x̃0i + 1, xi, x0i)

+
(

1− qi0 · di(x̃i, x̃0i, i, 0)− q0i · di(x̃i, x̃0i, 0, i)
)
· ρ(x̃i, x̃0i, xi, x0i)

]
,

di(xi, x0i, i, 0) = 0, ∀ xi = 0,

di(xi, x0i, 0, i) = 0, ∀ xi + x0i = m,

where in the objective, the term
∑

(xi,x0i)
Λ · qi0 · pi(xi, x0i) · di(xi, x0i, i, 0) · τi0 equals the expected

number of resources moving from the spoke to the hub by Little’s law.

G More on Numerical Examples

In this section, we plot the stationary distributions of the number of resources in the single hub
example (Section 7.1) in Section G.1, we consider another synthetic example with two hubs in
Section G.2, and we provide more numerical results for the RideAustin example (Section 7.2) in
Section G.3.

G.1 Stationary Distributions in the Single Hub Examples

Figure 6 shows the stationary distributions of the number of resources in the hub of the one hub
examples in Section 7.1 under the Lagrangian policy π(δ) and the static policy πF. Based on
the results in Whitt (1984), we actually have analytical expressions for the marginal distributions
with the static policy: the probability that there are x resources in any location i ∈ [0 : n] is(
m+n−1−k

n−1

)
/
(
m+n
n

)
(note that n + 1 locations are in the example), with the mode being that the

location has zero resources.

G.2 Two Hub Examples

In this section, we consider examples with two hubs as illustrated in Figure 7; these hubs are not
uniformly related as defined in Definition E.1. We let the arrival rates be qi1 = 1

3n and q1i = 1
6n

for hub 1, and qi2 = 1
6n and q2i = 1

3n for hub 2, for all spokes i ∈ [n], and let all the other arrival
rates be zero; thus without the flow “balancing” constraints captured by the dual variables µ, hub
1 tends to accumulate resources whereas hub 2 tends to lose resources.

For each fixed n, we calculate the same quantities as in the one hub examples (Section 7.1), and
we additionally calculate: the Lagrangian relaxation upper bound Ṽ R omitting the flow balance
constraints at the hubs, and the performance Ṽ π(δ) of the policy derived from the perturbed
problem, with δ =

√
n lnn, omitting the flow balance constraints at the hubs. Figure 8 shows the

simulation results for the two-hub case. From Figure 8, when there are multiple hubs and the hubs
are asymmetric, omitting the flow balance constraints at the hubs leads to a loose upper bound
and that the corresponding Lagrangian policy does not perform well.
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Figure 6: Stationary distributions of resources in the hub for the one hub examples (Section 7.1), with
varying number of spokes n. (a) is with the Lagrangian policy π(δ) and (b) is with the static policy πF.
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Figure 7: A hub-and-spoke network with 2 hubs (grey) and n symmetric spokes. We only draw the connec-
tions between spoke i and the hubs. Edge widths illustrate relative values of request rates.

Figures 9 and 10 show the stationary distributions under the Lagrangian policy that omits the
flow balance constraints of the hubs and the Lagrangian policy that incorporates these constraints,
respectively. Since hub 1 tends to accumulate resources whereas hub 2 tends to lose resources,
without flow balancing, hub 1 have excessive resources and hub 2 is essentially depleted.

G.3 More on the RideAustin Example

Figure 11 shows the partition of Austin, Texas with n = 100 locations and the ride flow of the city
based on the partition. In the ride flow figure, each node represents a location of the city. The
radius of a node is proportional to the amount of the requests that leave the location, and the
width of an edge is proportional to the size of the requests on the edge. An edge has the same color
as its origin location.
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Figure 8: Simulation results of the two-hub case. (b) is magnified versions of (a), highlighting the per-
formance of our policy and the Lagrangian relaxation upper bound. 95% confidence intervals around

V π
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)

are plotted with dashed lines in (b).
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Figure 9: Stationary distributions with the Lagrangian policy that omits the flow balance constraints in the
hubs, for the two hub examples (Section G.2). (a) is for the total number of resources in the hubs, (b) is for
the number of resources in hub one, and (c) is for the number of resources in hub two.

Figure 12 illustrates the locations of hubs obtained from solving (18) with different values of J
from one to six. For each value of J , the locations of the J hubs are the nodes labelled from one
to J .

Figure 13 demonstrates how the performances of the Lagrangian policy π(δ) and the Lagrangian-
based static policy πS(δ) varies with δ for each value of J .
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Figure 10: Stationary distributions with the Lagrangian policy π(δ) that incorporates the flow balance
constraints in the hubs, for the two hub examples (Section G.2). (a) is for the total number of resources in
the hubs, (b) is for the number of resources in hub one, and (c) is for the number of resources in hub two.
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Figure 11: (a) The Voronoi diagram of the cluster centers from solving the k-center problem with k = 100
and the first few centers initialized with k-means clustering centers. (b) The ride flow of the city based on
data from RideAustin and the partition.
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Bertsimas, D. and Mǐsić, V. V. (2016), ‘Decomposable markov decision processes: A fluid opti-
mization approach’, Operations Research 64(6), 1537–1555.

Besbes, O., Castro, F. and Lobel, I. (2018), ‘Surge pricing and its spatial supply response’. Available
at https://ssrn.com/abstract=3124571.

Besbes, O., Castro, F. and Lobel, I. (2019), ‘Spatial capacity planning’. Available at https:
//ssrn.com/abstract=3292651.

Bimpikis, K., Candogan, O. and Daniela, S. (2016), ‘Spatial pricing in ride-sharing networks’.
Operations Research, to appear.

Boyd, S. and Vandenberghe, L. (2004), Convex optimization, Cambridge university press.

Braverman, A., Dai, J. G., Liu, X. and Ying, L. (2016), ‘Empty-car routing in ridesharing systems’,
arXiv preprint arXiv:1609.07219 .

Brown, D. B. and Smith, J. E. (2017), ‘Index policies and performance bounds for dynamic selection
problems’. Management Science, to appear.

Caro, F. and Gallien, J. (2007), ‘Dynamic assortment with demand learning for seasonal consumer
goods’, Management Science 53(2), 276–292.

Du, Y. and Hall, R. (1997), ‘Fleet sizing and empty equipment redistribution for center-terminal
transportation networks’, Management Science 43(2), 145–157.

Durrett, R. (2010), Probability: theory and examples, 4 edn, Cambridge university press.

George, D. K. and Xia, C. H. (2011), ‘Fleet-sizing and service availability for a vehicle rental system
via closed queueing networks’, European journal of operational research 211(1), 198–207.

Gordon, W. J. and Newell, G. F. (1967), ‘Closed queuing systems with exponential servers’, Oper-
ations research 15(2), 254–265.

Harrison, J. M. and Wein, L. M. (1990), ‘Scheduling networks of queues: Heavy traffic analysis of
a two-station closed network’, Operations research 38(6), 1052–1064.

Hawkins, J. T. (2003), A Langrangian decomposition approach to weakly coupled dynamic opti-
mization problems and its applications, PhD thesis, Massachusetts Institute of Technology.

Hu, W. and Frazier, P. (2017), ‘An asymptotically optimal index policy for finite-horizon restless
bandits’, arXiv preprint arXiv:1707.00205 .

94

https://ssrn.com/abstract=3124571
https://ssrn.com/abstract=3292651
https://ssrn.com/abstract=3292651


Janson, S. (2018), ‘Tail bounds for sums of geometric and exponential variables’, Statistics &
Probability Letters 135, 1 – 6.

Kanoria, Y. and Qian, P. (2019), ‘Near optimal control of a ride-hailing platform via mirror back-
pressure’, arXiv preprint arXiv:1903.02764 .

Keilson, J. (1972), ‘A threshold for log-concavity for probability generating functions and associated
moment inequalities’, The Annals of Mathematical Statistics 43(5), 1702–1708.

Keilson, J. and Gerber, H. (1971), ‘Some results for discrete unimodality’, Journal of the American
Statistical Association 66(334), 386–389.

Kumar, S. and Kumar, P. (1996), Closed queueing networks in heavy traffic: Fluid limits and
efficiency, in ‘Stochastic Networks’, Springer, pp. 41–64.

Kunnumkal, S. and Talluri, K. (2016), ‘On a piecewise-linear approximation for network revenue
management’, Mathematics of Operations Research 41(1), 72–91.

Luenberger, D. G. (1997), Optimization by vector space methods, John Wiley & Sons.

Marklund, J. and Rosling, K. (2012), ‘Lower bounds and heuristics for supply chain stock alloca-
tion’, Operations Research 60(1), 92–105.

Miao, S., Jasin, S. and Chao, X. (2020), ‘Asymptotically optimal lagrangian policies for one-
warehouse multi-store system with lost sales’. Available at https://ssrn.com/abstract=
3552995.

Milgrom, P. and Segal, I. (2002), ‘Envelope theorems for arbitrary choice sets’, Econometrica
70(2), 583–601.

Milgrom, P. and Shannon, C. (1994), ‘Monotone comparative statics’, Econometrica: Journal of
the Econometric Society pp. 157–180.

Ozkan, E. and Ward, A. (2017), ‘Dynamic matching for real-time ridesharing’. Working Paper.

Pirkul, H. and Schilling, D. A. (1998), ‘An efficient procedure for designing single allocation hub
and spoke systems’, Management Science 44(2), 235–242.

RideAustin (2017), ‘Ride-austin-june6-april13 [data file and code book]’. Available at https:
//data.world/ride-austin/ride-austin-june-6-april-13.

Royden, H. L. and Fitzpatrick, P. (2010), Real analysis, 4 edn, Boston : Prentice Hall.

Shaked, M. and Shanthikumar, J. G. (2007), Stochastic orders, Springer Science & Business Media.

Song, D.-P. and Carter, J. (2008), ‘Optimal empty vehicle redistribution for hub-and-spoke trans-
portation systems’, Naval Research Logistics (NRL) 55(2), 156–171.

Talluri, K. T. and Van Ryzin, G. J. (2006), The theory and practice of revenue management, Vol. 68,
Springer Science & Business Media.

Talluri, K. and van Ryzin, G. (1998), ‘An analysis of bid-price controls for network revenue man-
agement’, Management Science 44(11), 1577–1593.

Topaloglu, H. (2009), ‘Using lagrangian relaxation to compute capacity-dependent bid prices in
network revenue management’, Operations Research 57(3), 637–649.

Topkis, D. M. (1978), ‘Minimizing a submodular function on a lattice’, Operations research
26(2), 305–321.

95

https://ssrn.com/abstract=3552995
https://ssrn.com/abstract=3552995
https://data.world/ride-austin/ride-austin-june-6-april-13
https://data.world/ride-austin/ride-austin-june-6-april-13


Topkis, D. M. (2011), Supermodularity and complementarity, Princeton university press.

Tran, T. H., O’Hanley, J. R. and Scaparra, M. P. (2017), ‘Reliable hub network design: Formulation
and solution techniques’, Transportation Science 51(1), 358–375.

Vera, A. and Banerjee, S. (2018), ‘The bayesian prophet: A low-regret framework for online decision
making’.

Waserhole, A. and Jost, V. (2016), ‘Pricing in vehicle sharing systems: Optimization in queuing
networks with product forms’, EURO Journal on Transportation and Logistics 5(3), 293–320.

Whitt, W. (1984), ‘Open and closed models for networks of queues’, AT&T Bell Laboratories
Technical Journal 63(9), 1911–1979.

Zayas-Cabán, G., Jasin, S. and Wang, G. (2019), ‘An asymptotically optimal heuristic for general
nonstationary finite-horizon restless multi-armed, multi-action bandits’, Advances in Applied
Probability 51(3), 745–772.

96


	Introduction
	Related Literature
	Notation and Terminology

	Problem Formulation
	Large Network Regime
	Hub-and-Spoke Networks: Optimal Control

	Lagrangian Relaxations
	The Lagrangian Relaxation
	The Lagrangian Policy in the Relaxation
	The Lagrangian Dual Problem
	Lagrangian Policy in the Original Problem and Perturbed Lagrangian Relaxation

	Performance Analysis
	Bounding VR- VR()
	Bounding VR() - V() 
	Bounding the Hub Depletion Probability
	Sufficient Conditions for Uniformly Bounded Spoke Resources

	Comparing to Static Pricing Policies
	Extensions
	Multiple Hubs
	Incorporating Spoke-to-Spoke Connections
	Incorporating Relocation Times

	Numerical Examples
	Single Hub Examples
	RideAustin Example

	Conclusions
	Proofs
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Equivalence Between (5) and (6)
	Equivalence Between (6) and (7)
	A Specialized Algorithm to Solve (7)

	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Proposition 4.6
	Proof of Lemma 4.8
	Proof of Lemma A.15
	Proof of Lemma A.16

	Proof of Theorem 6.1

	Additional Results
	More Discussions on the Lagrangian Dual Problem
	Optimal Static Pricing in the Large Network Regime
	Proof of Theorem D.1
	Proof of Part One
	Proof of Part Two

	Proof of Proposition 5.1
	Proof of Lemma D.7

	More Details on Example 5.1

	Performance Analysis of Uniformly Related Hubs
	Proof of Proposition E.1
	Proof of Proposition E.2

	Exponential Relocation Times in a Single Hub Network
	More on Numerical Examples
	Stationary Distributions in the Single Hub Examples
	Two Hub Examples
	More on the RideAustin Example


